Recognition of signals from pulsed sources based on the form of wavelet spectra constructed by the principal component method

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A method for recognizing infrasound acoustic signals for two types of sources based on the analysis of the shape of their wavelet spectra is proposed. The idea of constructing this form is based on the principal component method. Morphological image analysis methods are used to search for characteristic areas. The proposed method makes it possible to effectively solve the problem of multiclass classification of acoustic signals.

Sobre autores

M. Zakirov

Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences; Lomonosov Moscow State University

Autor responsável pela correspondência
Email: zakirov.mn16@physics.msu.ru

Faculty of Physics

Rússia, Moscow; Moscow

S. Kulichkov

Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences; Lomonosov Moscow State University

Email: zakirov.mn16@physics.msu.ru

Faculty of Physics

Rússia, Moscow; Moscow

A. Chulichkov

Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences; Lomonosov Moscow State University

Email: zakirov.mn16@physics.msu.ru

Faculty of Physics

Rússia, Moscow; Moscow

N. Tsybulskaya

Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences

Email: zakirov.mn16@physics.msu.ru
Rússia, Moscow

Bibliografia

  1. Закиров М. Н., Куличков С. Н., Чуличков А. И., Чунчузов И. П., Попов О. Е., Мишенин А. А., Буш Г. А., Цыбульская Н. Д., Голикова Е. В. Метод декомпозиции в задаче акустического зондирования анизотропной структуры атмосферы // Доклады Российской академии наук. Науки о Земле. 2023. T. 511. № 1. С. 98–104.
  2. Цыбульская Н. Д., Куличков С. Н., Чуличков А. И. Исследование возможности классификации инфразвуковых сигналов от разных источников // Известия РАН. Физика атмосферы и океана. 2012. Т. 48. № 4. С. 434–441.
  3. Пытьев Ю. П., Чуличков А. И. Методы морфологического анализа изображений. М.: ФИЗМАТЛИТ, 2010. 336 с.
  4. Chulichkov A., Kulichkov S., Tsybulskaya N., Goli kova E. Comparing signal waveforms and their use in estimating signal lag time // Pure and Applied Geophysics. 2019. 176. 335–344. https://doi.org/10.1007/s00024-018-2056-x
  5. Chulichkov A., Tsybulskaya N., Tsvetaev S., Surkont O. Classification of acoustic signals of discharge processes in insulation based on the shape of their wavelet spectra // Moscow University Physics Bulletin. 2009. 64(2). 218–220. https://doi.org/10.3103/S0027134909020246
  6. Chulichkov A. I., Tsybulskaya N. D., Zakirov M. N. et al. Detecting Infrasonic Signals from Impulsive Sources on the Basis of Their Wavelet Spectrum Forms // Pure Appl. Geophys. 2022. 179. 4609–4625. https://doi.org/10.1007/s00024-022-03183-w
  7. Lilly J. M., Olhede S. C. Generalized Morse Wa ve lets as a Superfamily of Analytic Wavelets // IEEE Transactions on Signal Processing. 2012. 60. No. 11 (November 2012): 6036–6041. https://doi.org/10.1109/TSP.2012.2210890
  8. Lilly J. M., Olhede S. C. Higher-Order Properties of Analytic Wavelets // IEEE Transactions on Signal Processing. 2009. 57. No. 1 (January 2009): 146–160. https://doi.org/10.1109/TSP.2008.2007607
  9. Calculating the singular values and pseudo-inverse of a matrix, by G. H. Golub and W. Kahan // Journal of the Society for Industrial & Applied Mathematics, Series B: Numerical Analysis. 1965. 212.
  10. A low-dimensional procedure for the characterization of human faces, by L. Sirovich and M. Kirby // Journal of the Optical Society of America A. 1987. 491.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024