Formation conditions of the postcollisional granites of the Kara orogen (North Taimyr, Central Arctic): application of 3D numeric modeling

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Using 3D numerical modeling, we analyze the formation of postcollisional granitoids of the Kara orogen in Northern Taimyr under conditions of elevated heat flow due to the orogen’s breakup prior to its mantle plume episode (280–250 Ma). The initial geometry of the model area, the boundary conditions and physical properties for the crust and the mantle have been selected to reflect the structure of the crust in the junction zone of the Kara, Central Taimyr, and Siberian blocks. Comparing 2D and 3D modeling results with identical parameters and medium physical properties defined by the Rayleigh number shows that 3D modeling yields a more realistic and correct description of relevant magmatic processes. At the base of the modeled Earth crust at ~50 km an area of melting of continental crust appears, possibly with slight input of mantle component, which generates magma uplift and the formation of closely spaced granitoid intrusions. Plutons with diameters 10–20 km were emplaced at depths 14–8 km during 15 million years, which is close to the actual geological position of postcollisional stocks of the Kara orogen.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Vernikovsky

Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Email: MatushkinNY@ipgg.sbras.ru

Academician of the RAS

Ресей, Novosibirsk; Novosibirsk

A. Semenov

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Email: MatushkinNY@ipgg.sbras.ru
Ресей, Novosibirsk; Novosibirsk

O. Polyansky

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences

Email: MatushkinNY@ipgg.sbras.ru
Ресей, Novosibirsk

A. Babichev

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Email: MatushkinNY@ipgg.sbras.ru
Ресей, Novosibirsk; Novosibirsk

A. Vernikovskaya

Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Email: MatushkinNY@ipgg.sbras.ru
Ресей, Novosibirsk; Novosibirsk

N. Matushkin

Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Хат алмасуға жауапты Автор.
Email: MatushkinNY@ipgg.sbras.ru
Ресей, Novosibirsk; Novosibirsk

Әдебиет тізімі

  1. Верниковский В. А. Геодинамическая эволюция Таймырской складчатой области // Труды ОИГГ М. Вып. 831. Новосибирск: Изд. СО РАН НИЦ ОИГГМ, 1996. 202 с.
  2. Vernikovsky V. A., Vernikovskaya A., Proskurnin V., Matushkin N., Proskurnina M., Kadilnikov P., Larionov A., Travin A. Late Paleozoic – Early Mesozoic Granite Magmatism on the Arctic Margin of the Siberian Craton during the Kara-Siberia Oblique Collision and Plume Events // Minerals. 2020. V. 10(6). 571. http://dx.doi.org/10.3390/min10060571
  3. Верниковский В. А., Полянский О. П., Бабичев А. В., Верниковская А. Е., Проскурнин В. Ф., Матушкин Н. Ю. Тектонотермальная модель для позднепалеозойского синколлизионного этапа формирования Карского орогена (Северный Таймыр, Центральная Арктика) // Геология и геофизика. 2022. Т. 63. № 4. С. 440–457. http://dx.doi.org/10.15372/GiG2021178
  4. Верниковский В. А., Семенов А. Н., Полянский О. П., Бабичев А. В., Верниковская А. Е., Матушкин Н. Ю. Тектонотермальная модель и эволюция магматизма на постколлизионном (предплюмовом) этапе развития Карского орогена (Северный Таймыр, Центральная Арктика) // Доклады РАН. Науки о Земле. 2024. Т. 514. № 1. С. 56–64. https://doi.org/10.31857/S2686739724010077
  5. Проскурнина М. А., Проскурнин В. Ф., Ремизов Д. Н., Ларионов А. Н. Кольцевые интрузивы Беспамятнинского ареала: проявления шошонит-латитового магматизма на Северном Таймыре // Региональная геология и металлогения. 2019. № 79. С. 5–22.
  6. Khudoley A. K., Verzhbitsky V. E., Zastrozhnov D. A., O’Sullivan P., Ershova V. B., Proskurnin V. F., Tuchkova M. I., Rogov M. A., Kyser T. K., Malyshev S. V., Schneider G. V. Late Paleozoic—Mesozoic tectonic evolution of the Eastern Taimyr-Severnaya Zemlya Fold and Thrust Belt and adjoining Yenisey-Khatanga Depression // J. Geodyn. 2018. V. 119. P. 221–241. https://doi.org/10.1016/j.jog.2018.02.002
  7. Sobolev S. V., Sobolev A. V., Kuzmin D. V., Krivolutskaya N. A., Petrunin A. G., Arndt N. T., Radko V. A., Vasiliev Y. R. Linking mantle plumes, large igneous provinces and environmental catastrophes // Nature. 2011. V. 477. P. 312–316. https://doi.org/10.1038/nature10385
  8. Jamieson R. A., Beaumont C. On the origin of orogens // GSA Bull. 2013. V. 125(11–12). P. 1671–1702. https://doi.org/10.1130/B30855.1
  9. Полянский О. П., Филиппов Ю. Ф., Фомин А. Н., Федорович М. О., Ревердатто В. В. Реконструкция динамики погружения и палеотемпературного режима северной окраины Сибирской платформы // Геология и геофизика. 2025. Т. 66. № 1. С. 90–108. https://doi.org/10.15372/GiG2024145
  10. Priestley K., McKenzie D. The relationship between shear wave velocity, temperature, attenuation and viscosity in the shallow part of the mantle // Earth Planet. Sci. Lett. 2013. V. 381. P. 78–91. https://doi.org/10.1016/j.epsl.2013.08.022
  11. Семенов А. Н., Полянский О. П. Численное моделирование механизмов минглинга и миксинга магмы на примере формирования сложных интрузивов // Геология и геофизика. 2017. Т. 58. № 11. С. 1665–1683. https://doi.org/10.15372/GiG20171104
  12. Lee J. R. On the three-dimensional effect for natural convection in horizontal enclosure with an adiabatic body: Review from the 2D results and visualization of 3D flow structure // Int. Comm. Heat and Mass Transfer. 2018. V. 92. P. 31‒38. https://doi.org/10.1016/j.icheatmasstransfer.2018.02.010
  13. Janssen R. J. A., Henkes R. A. W. M. Instabilities in three‐dimensional differentially heated cavities with adiabatic horizontal walls // Physics of Fluids. 1996. V. 8(1). P. 62–74. https://doi.org/10.1063/1.868814
  14. Astanina M. S., Buonomo B., Manca O., Sheremet M. A. Three-dimensional natural convection of fluid with temperature-dependent viscosity within a porous cube having local heater // Int. Comm. Heat and Mass Transfer. 2022. V. 139. 106510. https://doi.org/10.1016/j.icheatmasstransfer.2022.106510
  15. Zhu W., Wang M., Chen H. 2D and 3D lattice Boltzmann simulation for natural convection melting // Int. J. Thermal Sci. 2017. V. 117. P. 239–250. https://doi.org/10.1016/j.ijthermalsci.2017.03.025
  16. Добрецов Н. Л., Кирдяшкин А. Г., Кирдяшкин А. А. Глубинная геодинамика. Новосибирск: Изд. Гео, 2001. 409 с.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Geological and tectonic scheme of the north-eastern part of the Kara orogen according to [2] with modifications. 1–2 – Southern domain (South Taimyr folded belt) – deformed passive margin of the Siberian paleocontinent): 1 – mainly dolomites and limestones of the North Byrranga zone (O–C2); 2 – mainly sandstones, argillites and coal-bearing deposits of the South Byrranga zone (C3–P2); 3–5 – formations of the Siberian traps (P3–T1): 3 – basalts and tuffs; 4 – dolerite sills; 5 – alkaline and subalkaline syenites, granites and monzonites (249–233 Ma); 6–10 – Central domain (Central Taimyr accretionary belt): 6 – Mammoth-Shrenkov (I) and Faddeevsky (II) granite-metamorphic terranes (PP–MP); 7 – Neoproterozoic granitoids (940–850 Ma); 8 – island-arc complexes (NP1–3); 9 – ophiolites, including plagiogranites (750–730 Ma); 10 – carbonate terranes; 11 – deformed cover of the Siberian paleocontinent (NP3–C1); 12 – Northern domain (North Taimyr (Kara) block) – passive margin of the Kara microcontinent (NP3–Є); 13 – syncollisional granites (315–305 and 287–282 Ma); 14 – post-collisional granites (264–248 Ma) (red dotted line – supposed contours of intrusions); 15 – tectonic sutures – thrusts (G – Main Taimyr, F – Pyasino-Faddeevsky); 16 – P – Boundary thrust; 17 – overlying deposits (J–Q). U‒Pb age values ​​for zircons are taken from [1, 2, 5, 6]

Жүктеу (1MB)
3. Fig. 2. Results of 3D modeling. The area corresponds to the rectangle in Fig. 1, where the left far edge of the model refers to the Kara block, the right near edge – to the Central Taimyr block, the lower surface – to the base of the earth's crust. The isothermal surface of the solidus is shown at 30 (a) and 36 (b) million years from the onset of the increased heat flow, the maximum rise is indicated by marks. The color scale is given in the range of 240–730 °C to detail the structure of the massifs.

Жүктеу (1MB)
4. Fig. 3. Horizontal sections of the model (Fig. 2) at a depth of 10 and 15 km for time points of 21, 24, 27, 30, 33.5 and 36 million years, which corresponds to the geological time of 260–245 million years ago. Red areas with a temperature of >730 °C show the shape and position in plan of the massifs at this time.

Жүктеу (503KB)
5. Fig. 4. Comparison of the results of modeling in two-dimensional (left) and three-dimensional (right) formulations is given for similar geometry of the model area. The vertical section in the 3D version of the model is given in the middle of the model area, where portions of partial melt rise to different depth levels. The area of ​​partial melting (upper row) and temperature (lower row) are shown.

Жүктеу (392KB)

© Russian Academy of Sciences, 2025