Apatite fission-track ages from the Archean Karelian Craton: First results

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The first apatite fission-track ages (AFTA) from surface samples of geological objects within the Archean Karelian craton – the Kivakka massif (AFTA 901±95 Ma (±2σ)), the Pirttiguba dyke (957±87 and 1024.3±90.9 Ma) and the Ropruchey sill (990±101 Ma) have been obtained. Obtained results indicate the absence of regional thermal events above 120°C within the Karelian craton over the past billion years. This suggestion is in agreement with low-temperature thermochronology data from conjugate sites in Finland. Time-temperature models of the studied magmatic bodies indicate a monotonic cooling of the rocks of the present-day surface of the Karelian craton throughout the Phanerozoic at a rate of 0.12–0.31°C/Myr. This corresponds to a denudation rate of 6–16 m/Myr (assuming a geothermal gradient value of 20°C/km).

About the authors

T. E. Bagdasaryan

Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Email: tanya.bagdasaryan@yandex.ru
Moscow, Russia

R. V. Veselovskiy

Schmidt Institute of Physics of the Earth, Russian Academy of Sciences; Lomonosov Moscow State University, Geological faculty

Moscow, Russia; Moscow, Russia

A. V. Stepanova

Institute of Geology, Karelian Research Centre, Russian Academy of Sciences

Petrozavodsk, Russia

A. Yu. Bychkov

Lomonosov Moscow State University, Geological faculty

Moscow, Russia

References

  1. Fission-Track Thermochronology and its Application to Geology. Malusà M.G., Fitzgerald P.G. (Eds.). Springer Textbooks in Earth Sciences, Geography and Environment. Cham: Springer International Publishing, 2019. https://doi.org/10.1007/978-3-319-89421-8
  2. Green P.F., Japsen P., Bonow J.M., Chalmers J.A., Duddy I.R., Kukkonen I.T. The post-Caledonian thermo-tectonic evolution of Fennoscandia // Gondwana Research. 2022. V. 107. P. 201–234. https://doi.org/10.1016/j.gr.2022.03.007
  3. Hall A.M., Putkinen N., Hietala S., Lindsberg E., Holma M. Ultra-slow cratonic denudation in Finland since 1.5 Ga indicated by tiered unconformities and impact structures // Precambrian Research. 2021. V. 352. P. 106000. https://doi.org/10.1016/j.precamres.2020.106000
  4. Hendriks B., Andriessen P., Huigen Y., Leighton C., Redfield T., Murrell G., Gallagher K., Nielsen S.B. A fission track data compilation for Fennoscandia // Norwegian Journal of Geology. 2007. P. 143‒155.
  5. Veselovskiy R.V., Thomson S.N., Arzamastsev A.A., Botsyun S., Travin A.V., Yudin D.S., Samsonov A.V., Stepanova A.V. Thermochronology and Exhumation History of the Northeastern Fennoscandian Shield Since 1.9 Ga: Evidence from 40 Ar/39 Ar and Apatite Fission Track Data from the Kola Peninsula // Tectonics. 2019. V. 38. P. 2317–2337. https://doi.org/10.1029/2018TC005250
  6. Revyako N.M., Kostitsyn Yu.A., Bychkova Ya.V. Interaction between a mafic melt and host rocks during formation of the Kivakka layered intrusion, North Karelia // Petrology. 2012. V. 20. P. 101–119. https://doi.org/10.1134/S0869591112020051
  7. Stepanova A.V., Samsonov A.V., Salnikova E.B., Puchtel I.S., Larionova Yu.O., Larionov A.N., Stepanov V.S., Shapovalov Y.B., Egorova S.V. Palaeoproterozoic Continental MORB-type Tholeiites in the Karelian Craton: Petrology, Geochronology, and Tectonic Setting // J. Petrol. 2014. V. 55. P. 1719–1751. https://doi.org/10.1093/petrology/egu039
  8. Бибикова Е.В., Кирнозова Е.И., Лазарев Ю.Н. U–Pb изотопный возраст вепсия Карелии // ДАН СССР. 1990. Т. 310. № 1. С. 212–216.
  9. Lubnina N.V., Pisarevsky S.A., Söderlund U., Nilsson M., Sokolov S.J., Khramov A.N., Iosifidi A.G., Ernst R., Romanovskaya M.A., Pisakin B.N. New paleomagnetic and geochronological data from the Ropruchey sill (Karelia, Russia): implications for Late Paleoprotoerozic paleogeography // Supercontinent Symposium 2012. Programme and Abstracts. 2012. P. 81–82.
  10. Koistinen T., Stephens M.B., Bogatchev V., Nordgulen Ø., Wennestrom M., Korhonen J. Geological map of the Fennoscandian Shield, Scale 1:2 000 000. 2001.
  11. Barbarand J., Carte, A., Wood I., Hurford T. Compositional and structural control of fission-track annealing in apatite // Chem. Geol. 2003. V. 198. P. 107–137. https://doi.org/10.1016/S0009-2541(02)00424-2
  12. Carlson W.D., Donelick R.A., Ketcham R.A. Variability of apatite fission-track annealing kinetics; I, Experimental results // Am. Mineral. 1999. V. 84. P. 1213–1223. https://doi.org/10.2138/am-1999-0901
  13. Cogné N., Chew D.M., Donelick R.A., Ansberque C. LA-ICP-MS apatite fission track dating: A practical zeta-based approach // Chem. Geol. 2020. V. 531. 119302. https://doi.org/10.1016/j.chemgeo.2019.119302
  14. Kohn B.P., Ketcham R.A., Vermeesch P., Boone S.C., Hasebe N., Chew D., Bernet M., Chung L., Danišík M., Gleadow A.J.W., Sobel E.R. Interpreting and reporting fission-track chronological data // Bulletin of the Geological Society of America. 2024. https://doi.org/10.1130/B37245.1
  15. Ketcham R.A. Forward and Inverse Modeling of Low-Temperature Thermochronometry Data // Reviews in Mineralogy and Geochemistry. 2005. V. 58. P. 275–314. https://doi.org/10.2138/rmg.2005.58.11
  16. Vermeesch P. IsoplotR: A free and open toolbox for geochronology // Geosci. Front. 2018. V. 9. P. 1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001
  17. Егорова С.В. Палеопротерозойские габбронориты Беломорской и Карельской провинций Фенноскандинавского щита: сравнительный анализ состава, условий формирования и метаморфических преобразований. Дисс. на соиск. уч. степени к. г.- м. н. Специальность 25.00.04 – Петрология, вулканология. ИГ КарНЦ РАН, 2017.
  18. Larson T., Cederbom S. Sveconorwegian and Caledonian foreland basins in the Baltic Shield revealed by fission-track thermochronology // Terra Nova. 1999. V. 11. P. 210–215. https://doi.org/10.1046/j.1365-3121.1999.00249.x
  19. Bingen B. Viola G., Möller C., Vander Auwera J., Laurent A., Yi K. The Sveconorwegian orogeny // Gondwana Research. 2021. V. 90. P. 273–313. https://doi.org/10.1016/j.gr.2020.10.014
  20. Лубнина Н.В., Бычков А.Ю., Тарасов Н.А., Осадчий В.О., Микляева Е.П. Этапы палеопротерозойского химического перемагничивания Киваккского расслоенного интрузива и его геодинамическая позиция в период распада докембрийских суперконтинентов // Вестник Московского университета, Геология. 2024. Т. 6. С. 21–31. https://doi.org/10.55959/MSU0579-9406-4-2024-63-6-21-31

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences