Nicotine-induced Genetic and Epigenetic Modifications in Primary Human Amniotic Fluid Stem Cells


如何引用文章

全文:

详细

Background:Smoking during pregnancy has been linked to adverse health outcomes in offspring, but the underlying mechanisms are not fully understood. To date, the effect of maternal smoking has been tested in primary tissues and animal models, but the scarcity of human tissues limits experimental studies. Evidence regarding smoking-related molecular alteration and gene expression profiles in stem cells is still lacking.

Methods:We developed a cell culture model of human amniotic fluid stem cells (hAFSCs) of nicotine (NIC) exposure to examine the impact of maternal smoking on epigenetic alterations of the fetus.

Results:NIC 0.1 µM(equivalent to "light" smoking, i.e., 5 cigarettes/day) did not significantly affect cell viability; however, significant alterations in DNA methylation and N6-methyladenosine (m6A) RNA methylation in hAFSCs occurred. These epigenetic changes may influence the gene expression and function of hAFSCs. Furthermore, NIC exposure caused time-dependent alterations of the expression of pluripotency genes and cell surface markers, suggesting enhanced cell stemness and impaired differentiation potential. Furthermore, NICtreated cells showed reduced mRNA levels of key adipogenic markers and hypomethylation of the promoter region of the imprinted gene H19 during adipogenic differentiation, potentially suppressing adipo/lipogenesis. Differential expression of 16 miRNAs, with predicted target genes involved in various metabolic pathways and linked to pathological conditions, including cognitive delay and fetal growth retardation, has been detected.

Conclusions:Our findings highlight multi-level effects of NIC on hAFSCs, including epigenetic modifications, altered gene expression, and impaired cellular differentiation, which may contribute to long-term consequences of smoking in pregnancy and its potential impact on offspring health and development.

作者简介

Prabin Upadhyaya

Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara

Email: info@benthamscience.net

Cristina Milillo

Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara

Email: info@benthamscience.net

Annalisa Bruno

Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara

Email: info@benthamscience.net

Federico Anaclerio

Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara

Email: info@benthamscience.net

Carlotta Buccolini

Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara

Email: info@benthamscience.net

Anastasia Dell’Elice

Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara

Email: info@benthamscience.net

Ilaria Angilletta

Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara

Email: info@benthamscience.net

Marco Gatta

Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara

Email: info@benthamscience.net

Patrizia Ballerini

Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara

编辑信件的主要联系方式.
Email: info@benthamscience.net

Ivana Antonucci

Department of Psychological, Health and Territorial Sciences, University of Chieti-Pescara

Email: info@benthamscience.net

参考

  1. Jha P, Ranson MK, Nguyen SN, Yach D. Estimates of global and regional smoking prevalence in 1995, by age and sex. Am J Public Health 2002; 92(6): 1002-6. doi: 10.2105/AJPH.92.6.1002 PMID: 12036796
  2. Storr CL, Cheng H, Alonso J, et al. Smoking estimates from around the world: Data from the first 17 participating countries in the World Mental Health Survey Consortium. Tob Control 2010; 19(1): 65-74. doi: 10.1136/tc.2009.032474 PMID: 19965796
  3. Drake P, Driscoll AK, Mathews TJ. Cigarette smoking during pregnancy: United States, 2016. NCHS Data Brief 2018; (305): 1-8. PMID: 29528282
  4. Djordjevic MV, Doran KA. Nicotine content and delivery across tobacco products. Handb Exp Pharmacol 2009; 192(192): 61-82. doi: 10.1007/978-3-540-69248-5_3 PMID: 19184646
  5. Goniewicz ML, Kuma T, Gawron M, Knysak J, Kosmider L. Nicotine levels in electronic cigarettes. Nicotine Tob Res 2013; 15(1): 158-66. doi: 10.1093/ntr/nts103 PMID: 22529223
  6. Ino T. Maternal smoking during pregnancy and offspring obesity: Meta-analysis. Pediatr Int 2010; 52(1): 94-9. doi: 10.1111/j.1442-200X.2009.02883.x PMID: 19400912
  7. Hackshaw A, Rodeck C, Boniface S. Maternal smoking in pregnancy and birth defects: A systematic review based on 173 687 malformed cases and 11.7 million controls. Hum Reprod Update 2011; 17(5): 589-604. doi: 10.1093/humupd/dmr022 PMID: 21747128
  8. Lindblad F, Hjern A. ADHD after fetal exposure to maternal smoking. Nicotine Tob Res 2010; 12(4): 408-15. doi: 10.1093/ntr/ntq017 PMID: 20176681
  9. Svanes C, Sunyer J, Plana E, et al. Early life origins of chronic obstructive pulmonary disease. Thorax 2010; 65(1): 14-20. doi: 10.1136/thx.2008.112136 PMID: 19729360
  10. Martino D, Prescott S. Epigenetics and prenatal influences on asthma and allergic airways disease. Chest 2011; 139(3): 640-7. doi: 10.1378/chest.10-1800 PMID: 21362650
  11. Somm E, Schwitzgebel VM, Vauthay DM, et al. Prenatal nicotine exposure alters early pancreatic islet and adipose tissue development with consequences on the control of body weight and glucose metabolism later in life. Endocrinology 2008; 149(12): 6289-99. doi: 10.1210/en.2008-0361 PMID: 18687784
  12. Knopik VS, Maccani MA, Francazio S, McGeary JE. The epigenetics of maternal cigarette smoking during pregnancy and effects on child development. Dev Psychopathol 2012; 24(4): 1377-90. doi: 10.1017/S0954579412000776 PMID: 23062304
  13. Joubert BR, Håberg SE, Bell DA, et al. Maternal smoking and DNA methylation in newborns: In utero effect or epigenetic inheritance? Cancer Epidemiol Biomarkers Prev 2014; 23(6): 1007-17. doi: 10.1158/1055-9965.EPI-13-1256 PMID: 24740201
  14. Joubert BR, Håberg SE, Nilsen RM, et al. 450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ Health Perspect 2012; 120(10): 1425-31. doi: 10.1289/ehp.1205412 PMID: 22851337
  15. Maccani MA, Avissar-Whiting M, Banister CE, McGonnigal B, Padbury JF, Marsit CJ. Maternal cigarette smoking during pregnancy is associated with downregulation of miR-16, miR-21, and miR-146a in the placenta. Epigenetics 2010; 5(7): 583-9. doi: 10.4161/epi.5.7.12762 PMID: 20647767
  16. Maccani MA, Knopik VS. Cigarette smoke exposure-associated alterations to non-coding RNA. Front Genet 2012; 3: 53. doi: 10.3389/fgene.2012.00053 PMID: 22509180
  17. Izzotti A, Calin GA, Arrigo P, Steele VE, Croce CM, De Flora S. Downregulation of microRNA expression in the lungs of rats exposed to cigarette smoke. FASEB J 2009; 23(3): 806-12. doi: 10.1096/fj.08-121384 PMID: 18952709
  18. Wang CN, Yang GH, Wang ZQ, et al. Role of perivascular adipose tissue in nicotine-induced endothelial cell inflammatory responses. Mol Med Rep 2016; 14(6): 5713-8. doi: 10.3892/mmr.2016.5934 PMID: 27840948
  19. Nguyen T, Li GE, Chen H, Cranfield CG, McGrath KC, Gorrie CA. Maternal E-cigarette exposure results in cognitive and epigenetic alterations in offspring in a mouse model. Chem Res Toxicol 2018; 31(7): 601-11. doi: 10.1021/acs.chemrestox.8b00084 PMID: 29863869
  20. Kirschneck C, Maurer M, Wolf M, Reicheneder C, Proff P. Regular nicotine intake increased tooth movement velocity, osteoclastogenesis and orthodontically induced dental root resorptions in a rat model. Int J Oral Sci 2017; 9(3): 174-84. doi: 10.1038/ijos.2017.34 PMID: 28960194
  21. Fan J, Zhang W, Rao Y, et al. Perinatal nicotine exposure increases obesity susceptibility in adult male rat offspring by altering early adipogenesis. Endocrinology 2016; 157(11): 4276-86. doi: 10.1210/en.2016-1269 PMID: 27589084
  22. Rupprecht LE, Smith TT, Donny EC, Sved AF. Self-administered nicotine differentially impacts body weight gain in obesity-prone and obesity-resistant rats. Physiol Behav 2017; 176: 71-5. doi: 10.1016/j.physbeh.2017.02.007 PMID: 28189503
  23. Zhang W, Li Y, Fan J, et al. Perinatal nicotine exposure increases obesity susceptibility by peripheral leptin resistance in adult female rat offspring. Toxicol Lett 2018; 283: 91-9. doi: 10.1016/j.toxlet.2017.11.015 PMID: 29155039
  24. Yang X, Qi Y, Avercenc-Leger L, et al. Effect of nicotine on the proliferation and chondrogenic differentiation of the human Wharton’s jelly mesenchymal stem cells. Biomed Mater Eng 2017; 28(s1): S217-28. doi: 10.3233/BME-171644 PMID: 28372298
  25. Qu Q, Zhang F, Zhang X, Yin W. Bidirectional regulation of mouse embryonic stem cell proliferation by nicotine is mediated through Wnt signaling pathway. Dose Response 2017; 15(4): 1559325817739760. doi: 10.1177/1559325817739760 PMID: 29200986
  26. Slotkin TA, Skavicus S, Card J, Levin ED, Seidler FJ. Diverse neurotoxicants target the differentiation of embryonic neural stem cells into neuronal and glial phenotypes. Toxicology 2016; 372: 42-51. doi: 10.1016/j.tox.2016.10.015 PMID: 27816694
  27. Di Tizio D, Di Serafino A, Upadhyaya P, Sorino L, Stuppia L, Antonucci I. The impact of epigenetic signatures on amniotic fluid stem cell fate. Stem Cells Int 2018; 2018: 1-10. doi: 10.1155/2018/4274518 PMID: 30627172
  28. Antonucci I, Pantalone A, Tete S et al. Amniotic fluid stem cells: A promising therapeutic resource for cell-based regenerative therapy. Curr Pharm Des 2012; 18(13): 1846-63. doi: 10.2174/138161212799859602 PMID: 22352751
  29. Upadhyaya P, Di Serafino A, Sorino L, et al. Genetic and epigenetic modifications induced by chemotherapeutic drugs: Human amniotic fluid stem cells as an in vitro model. BMC Med Genomics 2019; 12(1): 146. doi: 10.1186/s12920-019-0595-3 PMID: 31660974
  30. Antonucci I, Di Pietro R, Alfonsi M, et al. Human second trimester amniotic fluid cells are able to create embryoid body- like structures in vitro and to show typical expression profiles of embryonic and primordial germ cells. Cell Transplant 2014; 23(12): 1501-15. doi: 10.3727/096368914X678553 PMID: 24480362
  31. Corsaro A, Paludi D, Villa V, et al. Conformation dependent pro-apoptotic activity of the recombinant human prion protein fragment 90-231. Int J Immunopathol Pharmacol 2006; 19(2): 339-56. doi: 10.1177/039463200601900211 PMID: 16831301
  32. Su C, Wang P, Jiang C, et al. Guanosine promotes proliferation of neural stem cells through cAMP-CREB pathway. J Biol Regul Homeost Agents 2013; 27(3): 673-80. PMID: 24152836
  33. De Simone A, La Pietra V, Betari N, et al. Discovery of the first-in-Class GSK-3β/HDAC dual inhibitor as disease-modifying agent to combat Alzheimer’s disease. ACS Med Chem Lett 2019; 10(4): 469-74. doi: 10.1021/acsmedchemlett.8b00507 PMID: 30996781
  34. Milillo C, Falcone L, Di Carlo P, et al. Ozone effect on the inflammatory and proteomic profile of human macrophages and airway epithelial cells. Respir Physiol Neurobiol 2023; 307: 103979. doi: 10.1016/j.resp.2022.103979 PMID: 36243292
  35. Martin M. Cutadapt removes adapter sequences from high- throughput sequencing reads. EMBnet J 2011; 17(1): 10. doi: 10.14806/ej.17.1.200
  36. Rueda A, Barturen G, Lebrón R, et al. sRNAtoolbox: An integrated collection of small RNA research tools. Nucleic Acids Res 2015; 43(W1): W467-73. doi: 10.1093/nar/gkv555 PMID: 26019179
  37. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014; 15(12): 550. doi: 10.1186/s13059-014-0550-8 PMID: 25516281
  38. Robinson MD, McCarthy DJ, Smyth GK. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010; 26(1): 139-40. doi: 10.1093/bioinformatics/btp616 PMID: 19910308
  39. Tarazona S, Furió-Tarí P, Turrà D, et al. Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package. Nucleic Acids Res 2015; 43(21): gkv711. doi: 10.1093/nar/gkv711 PMID: 26184878
  40. Van Vunakis H, Langone JJ, Milunsky A. Nicotine and cotinine in the amniotic fluid of smokers in the second trimester of pregnancy. Am J Obstet Gynecol 1974; 120(1): 64-6. doi: 10.1016/0002-9378(74)90180-X PMID: 4843750
  41. Jacob N, Golmard JL, Berlin I. Fetal exposure to tobacco: Nicotine and cotinine concentration in amniotic fluid and maternal saliva. J Matern Fetal Neonatal Med 2017; 30(2): 233-9. doi: 10.3109/14767058.2016.1169523 PMID: 27001007
  42. Jiang X, Liu B, Nie Z, et al. The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther 2021; 6(1): 74. doi: 10.1038/s41392-020-00450-x PMID: 33611339
  43. Xu T, He B, Sun H, et al. Novel insights into the interaction between N6-methyladenosine modification and circular RNA. Mol Ther Nucleic Acids 2022; 27: 824-37. doi: 10.1016/j.omtn.2022.01.007 PMID: 35141044
  44. He PC, He C. m 6 A RNA methylation: From mechanisms to therapeutic potential. EMBO J 2021; 40(3): e105977. doi: 10.15252/embj.2020105977 PMID: 33470439
  45. Chen L, Daley GQ. Molecular basis of pluripotency. Hum Mol Genet 2008; 17(R1): R23-7. doi: 10.1093/hmg/ddn050 PMID: 18632692
  46. Pipino C, Tomo PD, Mandatori D, et al. Calcium sensing receptor activation by calcimimetic R-568 in human amniotic fluid mesenchymal stem cells: Correlation with osteogenic differentiation. Stem Cells Dev 2014; 23(24): 2959-71. doi: 10.1089/scd.2013.0627 PMID: 25036254
  47. Morabito C, D’Alimonte I, Pierdomenico L, et al. Calcitonin-induced effects on amniotic fluid-derived mesenchymal stem cells. Cell Physiol Biochem 2015; 36(1): 259-73. doi: 10.1159/000374069 PMID: 25967965
  48. Pipino C, Pierdomenico L, Di Tomo P, et al. Molecular and phenotypic characterization of human amniotic fluid-derived cells: A morphological and proteomic approach. Stem Cells Dev 2015; 24(12): 1415-28. doi: 10.1089/scd.2014.0453 PMID: 25608581
  49. Ye WC, Huang SF, Hou LJ, et al. Potential therapeutic targeting of lncRNAs in cholesterol homeostasis. Front Cardiovasc Med 2021; 8: 688546. doi: 10.3389/fcvm.2021.688546 PMID: 34179148
  50. Bouwland-Both MI, van Mil NH, Tolhoek CP, et al. Prenatal parental tobacco smoking, gene specific DNA methylation, and newborns size: The Generation R study. Clin Epigenetics 2015; 7(1): 83. doi: 10.1186/s13148-015-0115-z PMID: 26265957
  51. Miyaso H, Sakurai K, Takase S, et al. The methylation levels of the H19 differentially methylated region in human umbilical cords reflect newborn parameters and changes by maternal environmental factors during early pregnancy. Environ Res 2017; 157: 1-8. doi: 10.1016/j.envres.2017.05.006 PMID: 28500962
  52. Rousseaux S, Seyve E, Chuffart F, et al. Immediate and durable effects of maternal tobacco consumption alter placental DNA methylation in enhancer and imprinted gene-containing regions. BMC Med 2020; 18(1): 306. doi: 10.1186/s12916-020-01736-1 PMID: 33023569
  53. Nakamura A, François O, Lepeule J. Epigenetic alterations of maternal tobacco smoking during pregnancy: A narrative review. Int J Environ Res Public Health 2021; 18(10): 5083. doi: 10.3390/ijerph18105083 PMID: 34064931
  54. Cosin-Tomas M, Cilleros-Portet A, Aguilar-Lacasaña S, Fernandez-Jimenez N, Bustamante M. Prenatal maternal smoke, DNA methylation, and multi-omics of tissues and child health. Curr Environ Health Rep 2022; 9(3): 502-12. doi: 10.1007/s40572-022-00361-9 PMID: 35670920
  55. Wiklund P, Karhunen V, Richmond RC, et al. DNA methylation links prenatal smoking exposure to later life health outcomes in offspring. Clin Epigenetics 2019; 11(1): 97. doi: 10.1186/s13148-019-0683-4 PMID: 31262328
  56. Di Baldassarre A, D’Amico MA, Izzicupo P, et al. Cardiomyocytes derived from human cardiopoietic amniotic fluids. Sci Rep 2018; 8(1): 12028. doi: 10.1038/s41598-018-30537-z PMID: 30104705
  57. Rodrigues M, Antonucci I, Elabd S, et al. p53 is active in human amniotic fluid stem cells. Stem Cells Dev 2018; 27(21): 1507-17. doi: 10.1089/scd.2017.0254 PMID: 30044176
  58. Tajiri N, Acosta S, Portillo-Gonzales GS, et al. Therapeutic outcomes of transplantation of amniotic fluid-derived stem cells in experimental ischemic stroke. Front Cell Neurosci 2014; 8: 227. doi: 10.3389/fncel.2014.00227 PMID: 25165432
  59. Antonucci I, Pantalone A, De Amicis D, et al. Human amniotic fluid stem cells culture onto titanium screws: A new perspective for bone engineering. J Biol Regul Homeost Agents 2009; 23(4): 277-9. PMID: 20003768
  60. Antonucci I, Iezzi I, Morizio E, et al. Isolation of osteogenic progenitors from human amniotic fluid using a single step culture protocol. BMC Biotechnol 2009; 9(1): 9. doi: 10.1186/1472-6750-9-9 PMID: 19220883
  61. Tarasi B, Cornuz J, Clair C, Baud D. Cigarette smoking during pregnancy and adverse perinatal outcomes: A cross-sectional study over 10 years. BMC Public Health 2022; 22(1): 2403. doi: 10.1186/s12889-022-14881-4 PMID: 36544092
  62. Li T, Zhang J, Zhang J, et al. Nicotine-enhanced stemness and epithelial-mesenchymal transition of human umbilical cord mesenchymal stem cells promote tumor formation and growth in nude mice. Oncotarget 2018; 9(1): 591-606. doi: 10.18632/oncotarget.22712 PMID: 29416638
  63. Wu Y, Zhou C, Yuan Q. Role of DNA and RNA N6-adenine methylation in regulating stem cell fate. Curr Stem Cell Res Ther 2018; 13(1): 31-8. PMID: 28637404
  64. Wang Y, Li Y, Toth JI, Petroski MD, Zhang Z, Zhao JC. N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol 2014; 16(2): 191-8. doi: 10.1038/ncb2902 PMID: 24394384
  65. Geula S, Moshitch-Moshkovitz S, Dominissini D, et al. m6 A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation. Science 2015; 347(6225): 1002-6. doi: 10.1126/science.1261417 PMID: 25569111
  66. Wang Y, Wang Y, Gu J, Su T, Gu X, Feng Y. The role of RNA m6A methylation in lipid metabolism. Front Endocrinol 2022; 13: 866116. doi: 10.3389/fendo.2022.866116 PMID: 36157445
  67. Zhang Y, Chen W, Zheng X, et al. Regulatory role and mechanism of m6 A RNA modification in human metabolic diseases. Mol Ther Oncolytics 2021; 22: 52-63. doi: 10.1016/j.omto.2021.05.003 PMID: 34485686
  68. Pesce M, Ballerini P, Paolucci T, Puca I, Farzaei MH, Patruno A. Irisin and autophagy: First update. Int J Mol Sci 2020; 21(20): 7587. doi: 10.3390/ijms21207587 PMID: 33066678
  69. Aguilo F, Walsh MJ. The N6-Methyladenosine RNA modification in pluripotency and reprogramming. Curr Opin Genet Dev 2017; 46: 77-82. doi: 10.1016/j.gde.2017.06.006 PMID: 28683341
  70. Frye M, Blanco S. Post-transcriptional modifications in development and stem cells. Development 2016; 143(21): 3871-81. doi: 10.1242/dev.136556 PMID: 27803056
  71. Heck AM, Wilusz CJ. Small changes, big implications: The impact of m6 A RNA methylation on gene expression in pluripotency and development. Biochim Biophys Acta Gene Regul Mech 2019; 1862(9): 194402. doi: 10.1016/j.bbagrm.2019.07.003 PMID: 31325527
  72. Schaal CM, Bora-Singhal N, Kumar DM, Chellappan SP. Regulation of Sox2 and stemness by nicotine and electronic-cigarettes in non-small cell lung cancer. Mol Cancer 2018; 17(1): 149. doi: 10.1186/s12943-018-0901-2 PMID: 30322398
  73. Liszewski W, Ritner C, Aurigui J, et al. Developmental effects of tobacco smoke exposure during human embryonic stem cell differentiation are mediated through the transforming growth factor-β superfamily member, Nodal. Differentiation 2012; 83(4): 169-78. doi: 10.1016/j.diff.2011.12.005 PMID: 22381624
  74. Luetragoon T, Rutqvist LE, Tangvarasittichai O, et al. Interaction among smoking status, single nucleotide polymorphisms and markers of systemic inflammation in healthy individuals. Immunology 2018; 154(1): 98-103. doi: 10.1111/imm.12864 PMID: 29140561
  75. Kratzer A, Chu HW, Salys J, et al. Endothelial cell adhesion molecule CD146: Implications for its role in the pathogenesis of COPD. J Pathol 2013; 230(4): 388-98. doi: 10.1002/path.4197 PMID: 23649916
  76. Gellner CA, Reynaga DD, Leslie FM. Cigarette smoke extract: A preclinical model of tobacco dependence. Curr Protoc Neurosci 2016; 77: 9.54.1-9.54.10. doi: 10.1002/cpns.14
  77. Wahl EA, Schenck TL, Machens HG, Egaña JT. Acute stimulation of mesenchymal stem cells with cigarette smoke extract affects their migration, differentiation and paracrine potential. Sci Rep 2016; 6(1): 22957. doi: 10.1038/srep22957 PMID: 26976359
  78. Ng TK, Huang L, Cao D, et al. Cigarette smoking hinders human periodontal ligament-derived stem cell proliferation, migration and differentiation potentials. Sci Rep 2015; 5(1): 7828. doi: 10.1038/srep07828 PMID: 25591783
  79. Zagoriti Z, El Mubarak MA, Farsalinos K, Topouzis S. Effects of exposure to tobacco cigarette, electronic cigarette and heated tobacco product on adipocyte survival and differentiation in vitro. Toxics 2020; 8(1): 9. doi: 10.3390/toxics8010009 PMID: 32033401
  80. Pant R, Firmal P, Shah VK, Alam A, Chattopadhyay S. Epigenetic regulation of adipogenesis in development of metabolic syndrome. Front Cell Dev Biol 2021; 8: 619888. doi: 10.3389/fcell.2020.619888 PMID: 33511131
  81. Gabory A, Ripoche MA, Le Digarcher A, et al. H19 acts as a trans regulator of the imprinted gene network controlling growth in mice. Development 2009; 136(20): 3413-21. doi: 10.1242/dev.036061 PMID: 19762426
  82. Xu Q, Xie W. Epigenome in early mammalian development: Inheritance, reprogramming and establishment. Trends Cell Biol 2018; 28(3): 237-53. doi: 10.1016/j.tcb.2017.10.008 PMID: 29217127
  83. Li K, Wu Y, Yang H, Hong P, Fang X, Hu Y. H19/miR-30a/C8orf4 axis modulates the adipogenic differentiation process in human adipose tissue-derived mesenchymal stem cells. J Cell Physiol 2019; 234(11): 20925-34. doi: 10.1002/jcp.28697 PMID: 31026067
  84. Han Y, Ma J, Wang J, Wang L. Silencing of H19 inhibits the adipogenesis and inflammation response in ox-LDL-treated Raw264.7 cells by up-regulating miR-130b. Mol Immunol 2018; 93: 107-14. doi: 10.1016/j.molimm.2017.11.017 PMID: 29172088
  85. Huang Y, Zheng Y, Jin C, Li X, Jia L, Li W. Long non-coding RNA H19 inhibits adipocyte differentiation of bone marrow mesenchymal stem cells through epigenetic modulation of histone deacetylases. Sci Rep 2016; 6(1): 28897. doi: 10.1038/srep28897 PMID: 27349231
  86. Daneshmoghadam J, Omidifar A, Akbari Dilmaghani N, Karimi Z, Emamgholipour S, shanaki M. The gene expression of long non-coding RNAs (lncRNAs): MEG3 and H19 in adipose tissues from obese women and its association with insulin resistance and obesity indices. J Clin Lab Anal 2021; 35(5): e23741. doi: 10.1002/jcla.23741 PMID: 33616223
  87. Corral A, Alcala M, Carmen Duran-Ruiz M, et al. Role of long non-coding RNAs in adipose tissue metabolism and associated pathologies. Biochem Pharmacol 2022; 206: 115305. doi: 10.1016/j.bcp.2022.115305 PMID: 36272599
  88. Zhu Y, Gui W, Lin X, Li H. Knock-down of circular RNA H19 induces human adipose-derived stem cells adipogenic differentiation via a mechanism involving the polypyrimidine tract-binding protein 1. Exp Cell Res 2020; 387(2): 111753. doi: 10.1016/j.yexcr.2019.111753 PMID: 31837293
  89. Wu Y, Li Q, Zhang R, Dai X, Chen W, Xing D. Circulating microRNAs: Biomarkers of disease. Clin Chim Acta 2021; 516: 46-54. doi: 10.1016/j.cca.2021.01.008 PMID: 33485903
  90. Yang M, Yan X, Yuan FZ, et al. MicroRNA-210-3p promotes chondrogenic differentiation and inhibits adipogenic differentiation correlated with HIF-3α signalling in bone marrow mesenchymal stem cells. BioMed Res Int 2021; 2021: 1-8. doi: 10.1155/2021/6699910 PMID: 33937412
  91. Shen J, Zhu X, Liu H. MiR-483 induces senescence of human adipose-derived mesenchymal stem cells through IGF1 inhibition. Aging (Albany NY) 2020; 12(15): 15756-70. doi: 10.18632/aging.103818 PMID: 32805717
  92. Ciortea R, Malutan AM, Bucuri CE, et al. Amniocentesis-When it is clear that it is not clear. J Clin Med 2023; 12(2): 454. doi: 10.3390/jcm12020454 PMID: 36675383

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024