In-depth Exploration of the Basics of Microfluidic Cell Deformability to Unveil its Applications in the Modern Era


Дәйексөз келтіру

Толық мәтін

Авторлар туралы

Priyanka Rani

Department of Pharmaceutical Analysis, ISF College of Pharmacy

Email: info@benthamscience.net

Bibhu Nanda

Department of Pharmaceutical Analysis, ISF College of Pharmacy

Email: info@benthamscience.net

Rohit Bhatia

Department of Pharmaceutical Analysis, ISF College of Pharmacy

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. An L, Ji F, Zhao E, Liu Y, Liu Y. Measuring cell deformation by microfluidics. Front Bioeng Biotechnol 2023; 11: 1214544. doi: 10.3389/fbioe.2023.1214544 PMID: 37434754
  2. Sun J, Huang X, Chen J, et al. Recent advances in deformation-assisted microfluidic cell sorting technologies. Analyst (Lond) 2023; 148(20): 4922-38. doi: 10.1039/D3AN01150J PMID: 37743834
  3. Urbanska M, Muñoz HE, Shaw Bagnall J, et al. A comparison of microfluidic methods for high-throughput cell deformability measurements. Nat Methods 2020; 17(6): 587-93. doi: 10.1038/s41592-020-0818-8 PMID: 32341544
  4. Chen H, Guo J, Bian F, Zhao Y. Microfluidic technologies for cell deformability cytometry. Smart Medicine 2022; 1(1): e20220001. doi: 10.1002/SMMD.20220001
  5. Guo Q, Duffy SP, Matthews K, Santoso AT, Scott MD, Ma H. Microfluidic analysis of red blood cell deformability. J Biomech 2014; 47(8): 1767-76. doi: 10.1016/j.jbiomech.2014.03.038 PMID: 24767871
  6. Han X, Liu Z, Zhao L, et al. Microfluidic cell deformability assay for rapid and efficient kinase screening with the CRISPR‐Cas9 system. Angew Chem Int Ed 2016; 55(30): 8561-5. doi: 10.1002/anie.201601984 PMID: 27258939
  7. Adamo A, Sharei A, Adamo L, Lee B, Mao S, Jensen KF. Microfluidics-based assessment of cell deformability. Anal Chem 2012; 84(15): 6438-43. doi: 10.1021/ac300264v PMID: 22746217
  8. Chen Y, Guo K, Jiang L, Zhu S, Ni Z, Xiang N. Microfluidic deformability cytometry: A review. Talanta 2023; 251: 123815. doi: 10.1016/j.talanta.2022.123815 PMID: 35952505
  9. Zhao Q, Cui H, Wang Y, Du X. Microfluidic platforms toward rational material fabrication for biomedical applications. Small 2020; 16(9): 1903798. doi: 10.1002/smll.201903798 PMID: 31650698
  10. Alhmoud H, Alkhaled M, Kaynak BE, Hanay MS. Leveraging the elastic deformability of polydimethylsiloxane microfluidic channels for efficient intracellular delivery. Lab Chip 2023; 23(4): 714-26. doi: 10.1039/D2LC00692H PMID: 36472226
  11. Ledvina V, Klepárník K, Legartová S, Bártová E. A device for investigation of natural cell mobility and deformability. Electrophoresis 2020; 41(13-14): 1238-44. doi: 10.1002/elps.201900357 PMID: 32358820
  12. Recktenwald SM, Lopes MGM, Peter S, et al. Erysense, a lab-on-a-chip-based point-of-care device to evaluate red blood cell flow properties with multiple clinical applications. Front Physiol 2022; 13: 884690. doi: 10.3389/fphys.2022.884690 PMID: 35574449
  13. Trinh TND, Do HDK, Nam NN, Dan TT, Trinh KTL, Lee NY. Droplet-based microfluidics: Applications in pharmaceuticals. Pharmaceuticals 2023; 16(7): 937. doi: 10.3390/ph16070937 PMID: 37513850
  14. Verma A, Bhattacharyya S. Microfluidics-the state-of-the-art technology for pharmaceutical application. Adv Pharm Bull 2022; 12(4): 700-11. PMID: 36415637
  15. Feng Y, Li M. Micropipette-assisted atomic force microscopy for single-cell 3D manipulations and nanomechanical measurements. Nanoscale 2023; 15(32): 13346-58. doi: 10.1039/D3NR02404K PMID: 37526589
  16. Manz XD, Albers HJ, Symersky P, et al. In vitro microfluidic disease model to study whole blood-endothelial interactions and blood clot dynamics in real-time. J Vis Exp 2020; (159): e61068. PMID: 32510519
  17. Dusny C, Grünberger A. Microfluidic single-cell analysis in biotechnology: From monitoring towards understanding. Curr Opin Biotechnol 2020; 63: 26-33. doi: 10.1016/j.copbio.2019.11.001 PMID: 31809975
  18. Hakim M, Khorasheh F, Alemzadeh I, Vossoughi M. A new insight to deformability correlation of circulating tumor cells with metastatic behavior by application of a new deformability-based microfluidic chip. Anal Chim Acta 2021; 1186: 339115. doi: 10.1016/j.aca.2021.339115 PMID: 34756251
  19. Grigorev G, Lebedev A, Wang X, Qian X, Maksimov G, Lin L. Advances in microfluidics for single red blood cell analysis. Biosensors 2023; 13(1): 117. doi: 10.3390/bios13010117 PMID: 36671952
  20. Su H, Zhang H, Zhang D, Wang H, Wang H. Black phosphorus-loaded inverse opal microspheres for intelligent drug delivery. J Drug Deliv Sci Technol 2024; 92: 105374. doi: 10.1016/j.jddst.2024.105374
  21. Zhou S, Chen B, Fu ES, Yan H. Computer vision meets microfluidics: A label-free method for high-throughput cell analysis. Microsyst Nanoeng 2023; 9(1): 116. doi: 10.1038/s41378-023-00562-8 PMID: 37744264
  22. Ning L. Microfluidic devices for cell separation and sample concentration. Doctoral thesis, Nanyang Technological University, Singapore 2018.
  23. Hosic S, Murthy SK, Koppes AN. Microfluidic sample preparation for single cell analysis. Anal Chem 2016; 88(1): 354-80. doi: 10.1021/acs.analchem.5b04077 PMID: 26567589
  24. Ito H, Kaneko M. On-chip cell manipulation and applications to deformability measurements. ROBOMECH J 2020; 7(1): 3. doi: 10.1186/s40648-020-0154-x
  25. Lin CH, Wang CK, Chen YA, Peng CC, Liao WH, Tung YC. Measurement of in-plane elasticity of live cell layers using a pressure sensor embedded microfluidic device. Sci Rep 2016; 6(1): 36425. doi: 10.1038/srep36425 PMID: 27812019
  26. Yu J, Zhou J, Sutherland A, et al. Microfluidics-based single-cell functional proteomics for fundamental and applied biomedical applications. Annu Rev Anal Chem 2014; 7(1): 275-95. doi: 10.1146/annurev-anchem-071213-020323 PMID: 24896308
  27. Rajawat A, Tripathi S. Disease diagnostics using hydrodynamic flow focusing in microfluidic devices: Beyond flow cytometry. Biomed Eng Lett 2020; 10(2): 241-57. doi: 10.1007/s13534-019-00144-6 PMID: 32431954
  28. Lindsey ML, Mayr M, Gomes AV, et al. Transformative impact of proteomics on cardiovascular health and disease: A scientific statement from the American Heart Association. Circulation 2015; 132(9): 852-72. doi: 10.1161/CIR.0000000000000226 PMID: 26195497
  29. Pinho D, Carvalho V, Gonçalves IM, Teixeira S, Lima R. Visualization and measurements of blood cells flowing in microfluidic systems and blood rheology: A personalized medicine perspective. J Pers Med 2020; 10(4): 249. doi: 10.3390/jpm10040249 PMID: 33256123

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024