Diversity of different atomic groups in the Cu-NbTi composite under the influence of batch hydroextrusio
- Autores: Samoylenko Z.A.1, Ivakhnenko N.N.1,2, Pushenko E.I.1, Badekin M.Y.2,3, Chernyavskaya N.V.1
-
Afiliações:
- Federal state budgetary institution “Donetsk Institute of Physics and Technology named after A.A. Galkin”
- Federal State Budgetary Educational Institution of Higher Education “Russian State Agrarian University Moscow Agricultural Academy named after K.A. Timiryazev”
- Federal State Budgetary Educational Institution of Higher Education “Donetsk State University”
- Edição: Nº 3 (2025)
- Páginas: 102-110
- Seção: Articles
- URL: https://snv63.ru/1028-0960/article/view/687691
- DOI: https://doi.org/10.31857/S1028096025030161
- EDN: https://elibrary.ru/EMTPDW
- ID: 687691
Citar
Resumo
Using X-ray diffraction analysis, the patterns of changes in the atomic structure in Cu-NbTi composite materials were studied at P = 50 atm, with a moving Poisson rotation speed of 0.5 rpm. and rotation speed n = (0–5) rpm. as a result of the action of batch hydroextrusion on the samples. It was found that the samples contain different-sized structural formations with long-range, mesoscopic and short-range atomic order. It is shown that the non-monotonic change in atomic order, with an increase in the number of revolutions of rotation of the mobile Poisson, is due to the structural phase transition of order-disorder into a state with the formation of different-sized atomic groups with long-range, mesoscopic and short-range atomic order, in which the manifestation of new interatomic interaction forces characterizing the formation of intermetallic clusters of atomic groups. It was found that already in the initial state after compacting the samples, the presence of clusters in the copper matrix phase containing niobium and titanium is observed, which characterizes an increase in heterophase in the sample system under study. The result is a homogeneous finely dispersed material containing uniformly distributed multi-scale fractions of metallic and intermetallic phases in the form of crystalline, mesoscopic and amorphous fractions. This structure exhibits increased strength, which is noticeable in the form of an increase in microhardness from 1.56 GPa to 4.15 GPa.
Texto integral

Sobre autores
Z. Samoylenko
Federal state budgetary institution “Donetsk Institute of Physics and Technology named after A.A. Galkin”
Autor responsável pela correspondência
Email: yulduz19.77@mail.ru
Rússia, Donetsk
N. Ivakhnenko
Federal state budgetary institution “Donetsk Institute of Physics and Technology named after A.A. Galkin”; Federal State Budgetary Educational Institution of Higher Education “Russian State Agrarian University Moscow Agricultural Academy named after K.A. Timiryazev”
Email: yulduz19.77@mail.ru
Rússia, Donetsk; Moscow
E. Pushenko
Federal state budgetary institution “Donetsk Institute of Physics and Technology named after A.A. Galkin”
Email: yulduz19.77@mail.ru
Rússia, Donetsk
M. Badekin
Federal State Budgetary Educational Institution of Higher Education “Russian State Agrarian University Moscow Agricultural Academy named after K.A. Timiryazev”; Federal State Budgetary Educational Institution of Higher Education “Donetsk State University”
Email: korund2002@list.ru
Rússia, Moscow; Donetsk
N. Chernyavskaya
Federal state budgetary institution “Donetsk Institute of Physics and Technology named after A.A. Galkin”
Email: korund2002@list.ru
Rússia, Donetsk
Bibliografia
- Cvijoviс-Alagiс I., Laketiс S., Momciloviс M., Ciganoviс J., Bajat J., Kojiс V. // Acta Metall. 2024. https://doi/org/10.1007/s40195-024-01705-0
- Panigrahi A., Sulkowski B., Waitz Th., Ozaltin K., Chrominski W., Pukenas A., Horky J., Lewandowska M., Skrotzki W., Zehetbauer M. // Journal of the Mechanical Behavior of Biomedical Materials. 2016. V. 62. P. 93-105. https://doi/org/10.1016/j.jmbbm.2016.04.042
- Campos-Quiros A., Cubero-Sesin J.M., Edalati K. // Materials Science and Engineering: A. 2020. V. 795. P. 139972. https://doi/org/10.1016/j.msea.2020.139972
- Pillmeier S., Pippan R., Eckert J., Hohenwarter A. // Materials Science and Engineering: A. 2023. V. 871. P. 144868. https://doi/org/10.1016/j.msea.2023.144868
- Korneva A., Straumal B., Kilmametov A., Kopacz S., Szczerba M., Gondek Ł., Cios G., Lityńska-Dobrzyńska L., Chulist R. // Materials Science and Engineering: A. 2022. V. 857. P. 144096. https://doi/org/10.1016/j.msea.2022.144096
- Volker B., Maier-Kiener V., Werbach K., Müller T., Pilz S., Calin M., Eckert J., Hohenwarter A. // Materials & Design. 2019. V. 179. P. 107864. https://doi/org/10.1016/j.matdes.2019.107864
- Ghosh S., Singh A.K., Mula S. // Materials & Design. 2016. V. 179. P. 47-57. https://doi/org/10.1016/j.matdes.2016.03.107
- Delshadmanesh M., Khatibi G., Zare Ghomsheh M., Lederer M., Zehetbauer M., Danninger H. // Materials Science and Engineering: A. 2017. V. 706. P. 83-94. https://doi/org/10.1016/j.msea.2017.08.098
- Hu N., Xie L., Liao Q., Gao A., Zheng Y., Pan H., Tong L., Yang D., Gao N., Starink M.J., Chu P.K., Wang H. // Acta Biomaterialia. 2021. V. 126. P. 524-536. https://doi/org/10.1016/j.actbio.2021.02.045
- Cvijovic-Alagic I., Laketic S., Bajat J., Hohenwarter A., Rakin M. // Surface and Coatings Technology. 2021. V. 423. P. 127609. https://doi/org/10.1016/j.surfcoat.2021.127609
- Korneva A., Straumal B., Gornakova A., Kilmametov A., Gondek Ł., Lityńska-Dobrzyńska L., Chulist R., Pomorska M., Zięba P. // Materials. 2022. V. 12. № 15. P. 4136. https://doi/org/10.3390/ma15124136
- Edalati K., Daio T., Lee S., Horita Z., Nishizaki T., Akune T., Nojima T., Sasaki T. // Acta Materialia. 2014. V. 80. P. 149. https://doi/org/10.1016/j.actamat.2014.07.065
- Zhang Sh., Liu Sh., Wan J., Liu W. // Materials Science and Engineering: A. 2020. V. 772. P. 138788. https://doi/org/10.1016/j.msea.2019.138788
- Hu J., Du L.-X., Wang J.-J. // Materials Science and Engineering: A. 2012. V. 554. P. 79. https://doi/org/10.1016/j.msea.2012.06.018
- Chen Ch.Y., Chen Ch.C. Yang J.R. // Materials Characterization. 2014. V. 88. P.69. https://doi/org/10.1016/j.matchar.2013.11.016.
- Samoilenko Z.A., Ivakhnenko N.N., Pushenko E.I., Belousov N.N., Chernyavskaya N.V., Badekin M Yu. // Inorganic Materials. 2023. V. 59. № 9. P. 932–939. https://doi/org/10.1134/s0020168523090121
- Жданов Г.С., Илюшин А.С., Никитина С.В. Дифракционный и резонансный структурный анализ М. Наука, 1980. 256 с.
- Самойленко З.А., Ивахненко Н.Н., Пащенко В.П., Копаев О.В., Остафийчук Б.К., Гасюк И.М. // Журнал технической физики. 2002. Т. 72. № 3. С. 83.
- Глезер А.М., Варюхин В.Н., Томчук А.А., Малеева Н.А. // Доклады Академии Наук. Техническая физика. 2014. Т. 457. № 5. С. 535. https://doi/org/10.7868/S0869565214230108
- Edalati K., Horita Z. // Materials Science and Engineering A. 2016. V. 652. P. 325. https://doi/org/https:doi.org/10.1016/j.msea.2015.11.074
- Белоусов Н.А. // Физика и техника высоких давлений. 2006. Т. 16. № 4. С. 90.
- Самойленко З.А. Кластерообразование в структурах с нарушенным дальним порядком: Автореф. дис. на соискание ученой степени доктора физ.-мат. наук: 01.04.07. Донецк: ДонФТИ, 1998.
- Архаров В.И., Мархасин Е.С., Самойленко З.А. // Физика металлов и металловедение. 1970. Т. 70. № 5. С. 1102.
- Кривоглаз М.А. // Электронная структура и электронные свойства металлов и сплавов. Киев: Наукова думка, 1988. 237 с.
- Матросов Н.И., Дугадко А.Б., Павловская Е.А., Сенникова Л.Ф., Шевченко Б.А.// Физика и техника высоких давлений. 1999. Т. 9. № 4. С. 63.
- Glezer А.М., Timshin I.A., Shchetinin I.V., Gorshenkov M.V., Sundeev R.V., Ezhova A.G. // Journal of Alloys and Compounds. 2018. V. 744. P. 791. https://doi/org/10.1016/j.jallcom.2018.02.124
Arquivos suplementares
