Effect of boundary roughness on the variability of the I-V data of silicon field-effect GAA nanotransistors

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The influence of various sources of variability on transistor performance increases with the transition to three-dimensional architectures, and the roughness boundary of the transistor's working area is one of the main factors contributing to this increase. In this paper, the variability of the key parameters of silicon field-effect GAA nanotransistors with an unalloyed cylindrical working area with different working area lengths from 25 to 10 nm is investigated to demonstrate the effect of scaling. Fluctuations in the characteristics are analyzed for two values of correlation lengths of 10 nm and 20 nm and a range of RMS values of boundary deviations in the range from 0.4 to 0.85 nm. For the key parameters under study, threshold voltage, Ion and Ioff currents, the standard deviation values for transistor structures with different channel lengths differ by about 2 times. At the same time, the patterns of variability of key parameters are functionally different. The consequence of this is that the methods for optimizing the effect of variability are not scalable due to the effect of boundary roughness.

全文:

受限制的访问

作者简介

N. Masalsky

Kurchatov Institute

编辑信件的主要联系方式.
Email: volkov@niisi.ras.ru
俄罗斯联邦, Moscow

参考

  1. International Roadmap for Devices and Systems: More Moore, IRDS // Piscataway, NJ, USA, 2021. https://irds.ieee.org/
  2. Li M., Yeo K.H., Suk S.D., Yeoh Y.Y., Kim D.W., Chung T.Y., Oh K.S., Lee W.S. Sub-10 nm gate-all-around CMOS nanowire transistors on bulk Si substrate // In Proceedings of the IEEE Symposium on VLSI Technology (VLSI), Kyoto, Japan, 15–17 June 2009. P. 94–95. ISBN: 978-1-4244-3308-7.
  3. Kim D.W., Yeo K., Suk S.D., Li M., Yeoh Y.Y., Sohn D.K., Chung C. Fabrication and electrical characteristics of self-aligned (SA) gate-all-around (GAA) Si nanowire MOSFETs (SNWFET) // In Proceedings of the IEEE International Conference on Integrated Circuit Design and Technology, Grenoble, France, 2–4 June 2010. P. 63–66. https://doi.org/10.1109/ICICDT.2010.5510288
  4. Pan D.Z., Yu B., Gao J-R. Design for Manufacturing With Emerging Nanolithography // IEEE Trans. on Computer Aided Design of Integrated Circuits and Systems. 2013. V. 32. Nо. 10. Р. 1453–1472. https://doi.org/10.1109/TCAD.2013.2276751
  5. Miakonkikh A.V., Tatarintsev A.A., Rogozhin A.E., Rudenko K.V. Technology for fabrication of sub-20 nm silicon planar nanowires array // Proc. SPIE 10224, The International Society for Optical Engineering, 2016. Art. No. 102241V (30 December 2016). https://doi.org/10.1117/12.2267112
  6. Bansal A.K., Gupta C., Gupta A., Singh R., Hook T.B., Dixit A. 3-D LER and RDF matching performance of nanowire FETs in inversion, accumulation, and junctionless modes // IEEE Trans. Electron Devices. 2018. V. 65. P. 1246–1252. https://doi.org/10.1109/TED.2018.2797799
  7. Espiñeira G., Nagy D., Indalecio G., García-Loureiro A.J., Kalna K., Seoane N. Impact of gate edge roughness variability on FinFET and gate-all-around nanowire FET // IEEE Electron Device Lett. 2019. V. 40. P. 510–513. https://doi.org/10.1109/LED.2019.2900494
  8. Lee J., Park T., Ahn H., Kwak J., Moon T., Shin C. Prediction model for random variation in FinFET induced by line-edge-roughness (LER) // Electronics. 2012. V. 10. Nо. 4. P. 455–461. https://doi.org/10.3390/electronics10040455
  9. Tehranipoor M.M., Guin U., Forte D. Counterfeit Integrated Circuits: Detection and Avoidance. Springer. 269. 2015. ISBN: 978-3-319-11823-9.
  10. Nanoelectronics: Devices, Circuits and Systems // Editor by Brajesh Kumar Kaushik. Elsevier. 2018. 476. ISBN: 9780128133545.
  11. Nagy D., Espiñeira G., Indalecio G., García-Loureiro A.J., Kalna K., Seoane N. Benchmarking of FinFET, nanosheet, and nanowire FET architectures for future technology nodes // IEEE Access. 2020. V. 8. P. 53196–53202. https://doi.org/10.1109/access.2020.2980925
  12. Маsalsky N.V. CVC simulation of ultrathin Soi-Cmos nanotransistors with a fully enclosed gate // Russian Microelectronics. 2021. V. 50. P. 387–393. https://doi.org/10.1134/S1063739721050036
  13. Yoon J.S., Lee S., Yun H., Baek R.H. Digital/Analog performance optimization of vertical nanowire FETs using machine learning // IEEE Access. 2021. V. 9. P. 29071–29077. https://doi.org/10.1109/ACCESS.2021.3059475
  14. Lee S., Yoon J.-S., Lee J., Jeong J., Yun H., Lim J., Lee S., Baek R.-H. Novel modeling approach to analyze threshold voltage variability in short gate-length (15–22 nm) nanowire FETs with various channel diameters // Nanomaterials. 2022. V. 12. Nо. 10. Art. 1721. https://doi.org/10.3390/nano12101721
  15. Elmessary M.A., Nagy D., Aldegunde M., Seoane N., Indalecio G., Lindberg J., Dettmer W., Perić D., García-Loureiro A.J., Kalna K. Scaling/LER Study of Si GAA Nanowire FET using 3D Finite Element Monte Carlo Simulations // Solid-State Electronics. 2017. V. 128. P. 17–24. https://doi.org/10.1016/j.sse.2016.10.018
  16. Donetti L., Sampedro C., Ruiz F.G. Multi-Subband Ensemble Monte Carlo simulations of scaled GAA MOSFETs // Solid-State Electronics. 2018. V. 143. P. 49–55. https://doi.org/ 10.1109/ULIS.2017.7962567
  17. Waldrop M.M. The chips are down for Moore’s law // Nature. 2016. V. 530. Nо. 7589. P. 144–151. https://doi.org/10.1038/530144a
  18. Sung W.-L., Li Y. Statistical prediction of nano sized-metal-grain induced threshold-voltage variability for 3D vertically stacked silicon gate-all-around nanowire n-MOSFETs // J. Electron. Mater. 2020. V. 49. Nо. 11. P. 6865–6871. https://doi.org/10.1007/s11664-020-08332-2
  19. Kim S.D., Wada H., Woo J.C.S. TCAD-based statistical analysis and modeling of gate line-edge roughness effect on nanoscale MOS transistor performance and scaling // IEEE Trans. Semiconductor Manufacturing. 2004. V. 17. Nо. 2. P. 192–200. https://doi.org/10.1109/TSM.2004.826935
  20. Lee S., Yoon J.S., Jeong J., Lee J., Baek R.H. Observation of mobility and velocity behaviors in ultra-scaled LG = 15 nm silicon nanowire field-effect transistors with different channel diameters // Solid-State Electron. 2020. V. 164. Art. 107740. https://doi.org/10.1016/j.see.2019.107740
  21. Fernandez J.G, Seoane N., Comesaña E., García-Loureiro A. Pelgrom-based predictive model to estimate metal grain granularity and line edge roughness in advanced multigate MOSFETs // IEEE Journal of the Electron Devices Society. 2022. V. 10. P. 953–959. https://doi.org/ 10.1109/JEDS.2018.2804383
  22. Giannatou E., Papavieros G., Constantoudis V., Papageorgiou H., Gogolides E. Deep learning denoising of SEM images towards noise-reduced LER measurements // Microelectron. Eng., 2019. V. 216. Art. 111051. https://doi.org/10.1016/j.mee.2019.111051
  23. Lorusso G.F., Inoue O., Ohashi T., Sanchez E.A., Constantoudis V., Koshihara S. Line width roughness accuracy analysis during pattern transfer in self-aligned quadruple patterning process // Proc. SPIE 9778, Metrology, Inspection, and Process Control for Microlithography XXX, 97780V (18 March 2016). https://doi.org/10.1117/12.2218863
  24. Kumar S., Goel E., Singh K., Singh B., Kumar M., Jit S. A compact 2D analytical model for electrical characteristics of double-gate tunnel field-effect transistors with a SiO2/high-k stacked gate-oxide structure // IEEE Trans. Electron Devices. 2016. V. 63. P. 3291–3330. https://doi.org/ 10.1109/TED.2016.2572610
  25. Medina Bailon C., Sadi T., Nedjalkov M., Lee J., Berrada S., Carrillo-Nunez H., Georgiev V. P., Selberherr S., Asenov A. Impact of the effective mass on the mobility in Si nanowire transistors // International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Austin, TX, 24–26 Sept. 2018. P. 297–300. https://doi.org/10.1109/SISPAD.2018.8551630
  26. Tomar G., Barwari A. Fundamental of electronic devices and circuits. Springer, 224, 2019, ISBN: 9789811502668.
  27. Yu S., Won S.M., Baac H.W., Son D., Shin C. Quantitative evaluation of line-edge roughness in various FinFET structures: Bayesian neural network with automatic model selection // IEEE Access. 2022. V. 10. P. 26340–26346. https://doi.org/10.1109/ACCESS.2022.3156118
  28. Masal’skii N.V. Simulation of silicon field-effect conical GAA nanotransistors with a stacked SiO2/HfO2 subgate dielectric // Russian Microelectronics. 2024. V. 53. Nо. 3. P. 237–244. https://doi.org/10.1134/S1063739724600274
  29. Nanowires – Recent Progress. Editor by Peng X. IntechOpen, 198, 2021, ISBN: 978-1-83962-392-9.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Schematics of the variation of the working area of the GAA field-effect nanotransistor due to the LER mechanism. The initial shape of the working region is reflected by the grey rectangle behind the figures. 1 - source, 2 - drain, 3 - working region, Lg - length of the working region

下载 (64KB)
3. Fig. 2. Dependence of σ (Uth) on ∆ at Λ = 20 nm and 10 nm, where the two lower ones are Lg = 25 nm and the two upper ones Lg = 10.2 nm. In both families, the upper curve is Λ = 20 nm and the lower curve is Λ = 10 nm at Uds = 0.05 V in all cases

下载 (115KB)
4. Fig. 3. Dependence of σUth / Lg on ∆ at Uds = 0.05 V and Λ = 20 nm, where 1 - Lg = 25 nm, 2 - Lg = 10.2 nm

下载 (90KB)
5. Fig. 4. Dependence of the correlation coefficient (CC) of threshold voltages at high drain bias versus threshold voltages at low drain bias on ∆, where 1 - Lg = 25 nm and Λ = 20 nm, 2 - Lg = 25 nm and Λ = 10 nm, 3 - Lg = 10.2 nm and Λ = 20 nm, 4 - Lg = 10.2 and Λ = 10 nm. The inset shows the scattering diagram of Uth at different Uds

下载 (146KB)
6. Fig. 5. Dependence of σ (log(Ioff)) on ∆ at Λ = 20 nm and 10 nm, where the lower two are Lg = 25 nm and the upper two Lg = 10.2 nm. In both families, the upper curve is Λ = 20 nm and the lower curve is Λ = 10 nm

下载 (136KB)
7. Fig. 6. Dependence of the standard deviation of the Ion current (σIon (μA/μm) on ∆ (nm) for transistors Lg = 10.2 nm (top two) and 25 nm (bottom two) and Λ = 20 (top in both groups) and 10 nm (bottom in both groups)

下载 (139KB)
8. Fig. 7. Spatial sensitivity of the Ioff current of the two prototypes to the type of strain in width, and with offset, at low and high voltage Uds. 1 - Lg = 25 nm, warp, Uds = 10 mV; 2 - Lg = 25 nm, thickening, Uds = 10 mV; 3 - Lg = 25 nm, warp, Uds = 1.0 V; 4 - Lg = 25 nm, thickening, Uds = 1.0 V; 5 - Lg = 10 nm, warp, Uds = 0.6 V; 6 - Lg = 10 nm, thickening, Uds = 0.6 V

下载 (141KB)
9. Fig. 8. Spatial sensitivity of the Ion current of the two prototypes to strain type in width, and with offset, where 1 - Lg = 25 nm, thickening; 2 - Lg = 25 nm, curvature; 3 - Lg = 10 nm, thickening; 4 - Lg = 10 nm, curvature

下载 (136KB)

版权所有 © Russian Academy of Sciences, 2025