Роль йода и пиридиновых оснований в электрокаталитическом окислении спиртов, опосредованном 4-АсNH-TEMPO

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Изучена роль йода, пиридиновых оснований и нитроксильного радикала (НР) – 4-АсNH-TEMPO в электроокислительном превращении спиртов в карбонильные соединения в двухфазной среде CH2Cl2/NaHCO3(водн.). Методом ЦВА установлено, что иодид-ион в слабощелочной среде (рН 8.6) окисляется с образованием активных форм йода (I2 и I+), являющихся терминальными окислителями для НР с превращением последнего в оксоаммониевый катион (ОК), необходимый для окисления спирта. Спектрофотометрически установлено, что пиридиновые основания способны стабилизировать I2 и/или I+ в виде комплексов типа [PyI2], [PyI]+, образование которых происходит преимущественно в органической фазе. Стабилизированные формы йода эффективно превращают НР в ОК на границе раздела фаз. Образование каталитического комплекса между ОК и пиридиновым основанием происходит в водной фазе. ЦВА-исследования показали, что скорость окисления спиртов, опосредованного НР, увеличивается до 4 раз в присутствии пиридинового основания, в отличие от окислительного превращения без пиридинового основания, что доказывает преимущества каталитической системы “НР – пиридиновое основание” и роль пиридинового основания как промотора в непрямом электроокислении спиртов.

Полный текст

Доступ закрыт

Об авторах

Е. Н. Шубина

Донской государственный технический университет

Email: kashparova2013@mail.ru
Россия, Ростов-на-Дону

В. П. Кашпарова

Южно-Российский государственный политехнический университет имени М.И. Платова

Автор, ответственный за переписку.
Email: kashparova2013@mail.ru
Россия, Новочеркасск

Я. А. Риккер

Донской государственный технический университет

Email: kashparova2013@mail.ru
Россия, Ростов-на-Дону

Д. В. Стегленко

Южный федеральный университет

Email: kashparova2013@mail.ru
Россия, Ростов-на-Дону

И. Ю. Жукова

Донской государственный технический университет; Южно-Российский государственный политехнический университет имени М.И. Платова

Email: iyuzh@mail.ru
Россия, Ростов-на-Дону; Новочеркасск

Список литературы

  1. Каган, Е.Ш., Кашпарова, В.П., Жукова, И.Ю., Кашпаров, И.И. Окисление спиртов электрохимически генерируемым иодом в присутствии нитроксильных радикалов. Журн. прикл. химии. 2010. Т. 83. Вып. 4. С. 693. [Kagan, E.S., Kashparova, V.P., Zhukova, I. Yu., and Kashparov, I.I., Oxidation of alcohols by iodine in the presence of nitroxyl radicals generated electrochemically, Russ. J. Appl. Chem., 2010, vol. 83, no. 4, p. 745.] https://doi.org/10.1134/S1070427210040324
  2. Inokuchi, T., Liu, P., and Torii, S., Oxidations of Dihydroxyalkanoates to Vicinal Tricarbonyl Compounds with a 4-BzoTEMPO-Sodium Bromite System or by Indirect Electrolysis Using 4-BzoTEMPO and Bromide Ion, Chem. Lett., 1994, vol. 23, p. 1411. https://doi.org/10.1002/chin.199507075
  3. Miller, R.A. and Hoerrner, R.S., Iodine as a Chemoselective Reoxidant of TEMPO: Application to the Oxidation of Alcohols to Aldehydes and Ketones, Org. Lett., 2003, no. 5, p. 285. https://doi.org/10.1021/ol0272444
  4. Attoui, M. and Vatele, J.-M., TEMPO/NBu4Br-Catalyzed Selective Alcohol Oxidation with Periodic Acid, Synlett, 2014, vol. 25, p. 2923. https://doi.org/10.1055/s-0034-1378913
  5. Kashparova, V.P., Klushin, V.A., Zhukova, I.Yu., Kashparov, I.S., Chernysheva, D.V., Il’chibaeva, I.B., Smirnova, N.V., Kagan, E. Sh., and Chernyshev, V.M., A TEMPO-like nitroxide combined with an alkyl-substituted pyridine: An efficient catalytic system for the selective oxidation of alcohols with iodine, Tet. Lett., 2017, vol. 58, no. 36, p. 3517. https://doi.org/10.1016/J.TETLET.2017.07.088
  6. Kashparova, V.P., Klushin, V.A., Leontyeva, D.V., Smirnova, N.V., Chernyshev, V.M., and Ananikov, V.P., Selective Synthesis of 2,5-Diformylfuran by Sustainable 4-acetamido-TEMPO/Halogen-Mediated Electrooxidation of 5-Hydroxymethylfurfural, Chem. Asian J., 2016, vol. 11, no. 18, p. 2578. https://doi.org/org/10.1002/asia.201600801
  7. Shono, T., Matsumura, Y., Hayashi, J., and Mizoguchi, M., Electrochemical oxidation of alcohols using iodonium ion as an electron carrier, Tet. Lett., 1979, vol. 21, no. 2, p. 165. https://doi.org/10.1016/S0040–4039(01)85914–1
  8. Semmelhack, M.F., Chou, C.S., and Cortes, D.A., Nitroxyl-mediated electrooxidation of alcohols to aldehydes and ketones, J. Amer. Chem. Soc., 1983, vol. 105(13), p. 4492. https://doi.org/10.1021/ja00351a070
  9. Кашпарова, В.П. Шубина, Е.Н., Жукова, И.Ю., Ильчибаева, И.Б., Смирнова, Н.В., Каган, Е.Ш. Промотирующее действие пиридиновых оснований на непрямое электрохимическое окисление спиртов. Изв. вузов. Сер. Химия и химическая технология. 2019. Т. 62. № 9. С. 33. [Kashparova, V.P., Shubina, E.N., Zhukova, I. Yu., Ilchibaeva, I.B., Smirnova, N.V., and Kagan, E. Sh., Promoting effect of pyridine bases on indirect electrochemical oxidation of alcohols. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol., 2019, vol. 62, no. 9, p. 33.] https://doi.org/10.6060/ivkkt.20196209.5923
  10. Bobbitt, J.M., Bartelson, A.L., Bailey, W.F., Hamlin, T.A., and Kelly, Ch.B., Oxoammonium Salt Oxidations of Alcohols in the Presence of Pyridine Bases, J. Org. Chem., 2014, vol. 79, no. 3, p. 1055. https://doi.org/org/10.1021/jo402519m
  11. Dryhurst, G. and Elving, Ph.J., Electrooxidation of halides at pyrolytic graphite electrode in aqueous and acetonitrile solutions, Anal. Chem., 1967, vol. 39, no. 6, p. 606. https://doi.org/10.1021/ac60250a014
  12. Verhoef, J.C., Electrochemical behaviour of iodide at a rotating platinum disk electrode in methanol, Electrochim. Acta, 1978, vol. 23, p. 433. https://doi.org/10.1016/0013-4686(78)87042
  13. Яралиев, Я.А. Электрохимия йода. Успехи химии. 1982. Вып. 6. С. 990. [Yaraliev, Y.A., Russ. Chem. Rev., 1982, vol. 51, no. 6, p. 566.] https://doi.org/org/10.1070/rc1982v051n06abeh002866
  14. Резникова, Л.А., Моргунова, Е.Е., Бограчев, Д.А., Григин, А.П., Давыдов, А.Д. Предельный ток в системе йод-йодид на вертикально расположенном электроде в условиях естественной конвекции. Электрохимия. 2001. Т. 37. С. 442. [Reznikova, L.A., Morgunova, E.E., Bograchev, D.A., Grigin, A.P., and Davydov, A.D., Limiting Current in Iodine–Iodide System on Vertical Electrode under Conditions of Natural Convection, Russ. J. Electrochem., 2001, vol. 37, p. 382.] https://doi.org/10.1023/a:1016626006594
  15. Sandford, C., Edwards, M.A., Klunder, K., Hickey, D.P., Li, M., Barman, K., Sigman, M.S., White, H.S., and Minteer, S., A Synthetic Chemist’s Guide to Electroanalytical Tools for Studying Reaction Mechanisms, Chem. Sci., 2019, vol. 10, p. 6404. https://doi.org/10.1039/c9sc01545k
  16. Будников, Г.К., Вяселев, М.Р., Майстренко, В.Н. Основы современного электрохимического анализа. М.: Мир, 2003. 592 с. [Budnikov, G.K., Vyaselev, M.R., and Maistrenko, V.N., Fundamentals of modern electrochemical analysis. (in Russian), Moscow: Mir, 2003. 592 p.]
  17. Hubbard, A.T., Osteryoung, R.A., and Anson, F.C., Further Study of the Iodide-Iodine Couple at Platinum Electrodes by Thin Layer Electrochemistry, Anal. Chem., 1966, vol. 38, no. 6, p. 692. https://doi.org/10.1021/ac60238a006
  18. Hanson, K.J. and Tobias, Ch.W., Electrochemistry of iodide in propylene carbonate i. cyclic voltammetry monitored by optical spectroscopy, J. Electrochem. Soc., 1987, p. 1.
  19. Gao, Y.F., Yu, L.L, Lu, Q-Q, and Ma, C.A., Electrochemical Oxidation Behavior of Iodide on Platinum Electrode in Acid Solution, Acta Phys. Chim. Sin., 2009, vol. 25, no. 7, p. 1421. https://doi.org/10.3866/PKU.WHXB20090735
  20. Kolthoff, I.M. and Jordan, J., Voltammetry iodine and iodide at rotate platinum electrodes, J. Amer. Chem. Soc., 1953, vol. 75, p. 1571. https://doi.org/10.1023/A:1016626006594
  21. Geissler, W., Nitzsche, R., and Landsberg, R., Über die elektrochemische oxydation von Jodid und Jod zum hypojodit an graphit elektroden, Electrochim. Acta, 1966, vol. 11, no. 4, p. 389. https://doi.org/10.1016/0013-4686(66)80017-8
  22. Miller, F.J. and Zittel, H.E., Voltammetry of the iodine system in aqueous medium at the pyrolytic graphite electrode, J. Electroanal. Chem., 1966, vol. 11, no. 2, p. 85. https://doi.org/10.1016/0022-0728(66)80067-0
  23. Шубина, Е.Н., Кашпарова, В.П., Букурова, В.С., Катария, Я.В., Жукова, И.Ю. Высокоэффективный однореакторный электрокаталитический метод трансформации спиртов в нитрилы. Журн. орган. химии. 2023. T. 93. № 10. С. 1563. [Shubina, E.N., Kashparova, V.P., Bukurova, V.S., Kataria, Ya.V., and Zhukova, I. Yu., Highly Efficient One Pot Electrocatalytic Method for Transforming Alcohols to Nitriles, Russ. J. Gen. Chem., 2023, vol. 93, no. 10, p. 2498.] https://doi.org/10.1134/S1070363223100031
  24. Tissot, H., Coustel, R., Rochet, F., Boucly, A., Carteret, C., André, E., Bournel, F., and Gallet, Jean-J., Deciphering Radiolytic Oxidation in Halide Aqueous Solutions: A Pathway Toward Improved Synchrotron NAP-XPS Analysis, Phys. Chem., 2023, vol. 127, no. 32, p. 15825. https://doi.org/10.1021/acs.jpcc.3c03676
  25. Batsanov, A.S., Lightfoot, A.P., Twiddle, S.J.R., and Whiting, A., Bis(2,6-dimethylpyridyl)iodonium dibromoiodate, Acta Crystallogr. Sect. E: Struct. Rep. Online, 2006, vol. 62, no. 3, p. o901. https://doi.org/10.1107/s1600536806003680
  26. Ward, J.S., Gomila, R.M., Frontera, A., and Rissanen, K., Iodine(I) complexes incorporating sterically bulky 2-substituted pyridines, RSC Adv., 2022, vol. 12, p. 8674. https://doi.org/10.1039/d2ra01390h
  27. Клюбин, В.В., Клюбина, К.А., Маковецкая, К.Н. Кинетика растворения кристаллического иода в этаноле при комнатной температуре и 60C. Журн. физ. химии. 2018. Т. 92. № 2. С. 277. [Klyubin, V.V., Klyubina, K.A., and Makovetskaya, K.N., Kinetics of Crystalline Iodine Dissolution in Ethanol at Room Temperature and at 60C, Russ. J. Phys. Chem., 2018, vol. 92, p. 295.] https://doi.org/10.1134/S0036024418020127
  28. Palmer, D.A., Ramette, R.W., and Mesmer, R.E., The hydrolysis of iodine: Equilibria at high temperatures, J. Nucl. Mater., 1985, vol. 130, p. 280. https://doi.org/org/10.1016/0022-3115(85)90317-4
  29. Crawford, E., McIndoe, J.S., and Tuck, D.G., The Energetics of the X2 + X– → X3 – Equilibrium (X = Cl, Br, I) in Aqueous and Nonaqueous Solution, Can. J. Chem., 2006, vol. 84, no. 12, p. 1607. https://doi.org/10.1139/v06-165
  30. Gardner, J.M., Abrahamsson, M., Farnum, B.H., and Meyer, G.J., Visible Light Generation of Iodine Atoms and I–I Bonds: Sensitized I–Oxidation and I3– Photodissociation, J. Amer. Chem. Soc., 2009, vol. 131, no. 44, p. 16206. https://doi.org/10.1021/ja905021c
  31. Bernal-Uruchurtux, M.I., Kerenskaya, G., and Janda, K.C., Structure, spectroscopy and dynamics of halogen molecules interacting with water, Int. Rev. Phys. Chem., 2009, vol. 28, no. 2, p. 223. https://doi.org/10.1080/01442350903017302
  32. Zingaro, R., Werf, C.A.V., and Kleinberg, J., Evidence for the Existence of Unipositive Iodine Ion in Solutions of Iodine in Pyridine, J. Amer. Chem. Soc., 1951, vol. 73, no. 1, p. 88. https://doi.org/10.1021/ja01145a031
  33. Chaudhuri, J. N. and Basu, S., Charge-transfer interaction between iodine and aza-aromatics, Trans. Farad. Soc., 1959, vol. 55, p. 898. https://doi.org/10.1039/tf9595500898
  34. Brayer, G.D. and James, M.N.G., A charge-transfer complex: bis(2,4,6-trimethyl-1-pyridyl)iodonium perchlorate, Acta Crystallogr., Sect. B: Struct. Sci, 1982, vol. 38, no. 2, p. 654. https://doi.org/10.1107/S0567740882003689
  35. Le, T.P.P. and Opaprakasit, P., Conversion Mechanisms of Nitroxyl Radical (TEMPO), Oxoammonium Cation, and Hydroxylamine in Aqueous Solutions: Two-Dimensional Correlation Ultraviolet–Visible Spectroscopy, Appl. Spectrosc., 2020, vol. p. 1. https://doi.org/10.1177/0003702820961097
  36. Кашпарова, В.П., Папина, Е.Н., Каган, Е.Ш., Жукова, И.Ю. Электрохимический вариант синтеза оксоаммониевой соли и нитроксильного радикала. Изв. вузов. Сев.-Кавк. регион. Техн. науки. 2018. № 3 (199). С. 129. [Kashparova, V.P., Zhukova, Yu., Papina, E.N., and Kagan, E. Sh., Electrochemical option of synthesis of oxoammonium salt and nitroxyl radical. Izv. vuzov. Sev.-Kavk. region. Technical sciences (in Russian), 2018, no. 3 (199). p. 129.] https://doi.org/10.17213/0321-2653-2018-3-129-133
  37. Nutting, J.E., Rafiee, M., and Stahl, Sh.S., Tetramethylpiperidine N-Oxyl (TEMPO), Phthalimide N-Oxyl (PINO), and Related N-Oxyl Species: Electrochemical Properties and Their Use in Electrocatalytic Reactions, Chem. Rev., 2017, vol. 118, p. 4834. https://doi.org/10.1021/acs.chemrev.7b00763

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. ЦВА СУ-электрода: 1 – 0.5 M NaHCO3 (рН 8.6); 2 – 0.5 M NaHCO3 + 4-AcNH-TEMPO (10–3 моль); 3 – 0.5 M NaHCO3 + KI (2 · 10–3 моль). ЦВА Pt-электрода: 4 – 0.5 M NaHCO3 + KI (2 · 10–3 моль). Температура электролита – 25°С; скорость развертки потенциала – 0.01 В/с.

Скачать (166KB)
3. Схема 1. Однореакторное непрямое электрокаталитическое окисление спиртов

Скачать (180KB)
4. Рис. 2. ЦВА СУ-электрода: 1 – 0.5 M NaHCO3 (рН 8.6); 2 – 0.5 M NaHCO3 + KI (2 · 10–3 моль); 3 – 0.5 M NaHCO3 + KI (2 · 10–3 моль) + Py (0.2 · 10–3 моль); 4 – 0.5 M NaHCO3 + KI (2 · 10–3 моль) + Py (0.4 · 10–3 моль); 5 – 0.5 M NaHCO3 + KI (2 · 10–3 моль) + Py (0.6 · 10–3 моль). Температура электролита – 25°С; скорость развертки потенциала – 0.01 В/с.

Скачать (188KB)
5. Рис. 3. Электронные спектры поглощения в Н2О: (а) 1 – 10–3 M йод; 2 – 10–3 M Py; 3–10–3 M 2,6-Lut; 4 – 10–3 M Collid; (б) смесей: 1 – 10–3 M йод + 10–3 M Py; 2 – 10–3 M йод + 10–3 M 2,6-Lut; 3 – 10–3 M йод + 10–3 M Collid.

Скачать (200KB)
6. Рис. 4. Электронные спектры поглощения в СН2Сl2: (а) 1 – 10–3 M I2; 2 – 10–3 M Py; 3 – 10–3 M 2,6-Lut; 4 – 10–3 M Collid; (б) смесей: 1 – 10–3 M I2 + 10–3 M Py; 2 – 10–3 M I2 + 10–3 M 2,6-Lut; 3 – 10–3 I2 + 10–3 M Collid.

Скачать (237KB)
7. Рис. 5. Электронные спектры поглощения: (а) в H2O: 1 – 0.2 · 10–3 M 4-AcNH-TEMРO; 2 – 0.2 · 10–3 M 4-AcNH-TEMРO + 10–3 M I2; 3 – 10–3 Py + 10–3 M I2; 4 – 0.2 · 10–3 M 4-AcNH-TEMРO + 10–3 M I2 + 10–3 M Py; (б) в СН2Сl2: 1 – 0.2 · 10–3 M 4-AcNH-TEMPO; 2 – 0.2 · 10–3 4-AcNH-TEMPO + 10–3 M I2; 3 – 10–3 M Py + 10–3 M I2; 4 – 0.2 · 10–3 M 4-AcNH-TEMPO + 10–3 M I2 + 10–3 M Py.

Скачать (262KB)
8. Рис. 6. ЦВА СУ-электрода: 1 – 0.5 М NaHCO3 (рН 8.6); 2 – 0.5 М NaHCO3 + 1-октанол (50 · 10–3 моль); 3 – 0.5 М NaHCO3 + Py (10–3 моль); 4 – 0.5 М NaHCO3 + 4-AcNH-TEMPO (10–3 моль); 5 – 0.5 М NaHCO3 + 4-AcNH-TEMPO (10–3 моль) + 1-октанол (50 · 10–3 моль). Температура электролита – 25°С; скорость развертки потенциала – 0.01 В/с.

Скачать (179KB)
9. Рис. 7. ЦВА СУ-электрода: 1 – 0.5 М NaHCO3 (рН 8.6); 2 – 0.5 М NaHCO3 + 4-AcNH-TEMPO (10–3 моль); 3 – 0.5 М NaHCO3 + 4-AcNH-TEMPO (10–3 моль) + Py (10–3 моль); 4 – 0.5 М NaHCO3 + 4-AcNH-TEMPO (10–3 моль) + Py (10–3 моль) + 1-октанол (50 · 10–3 моль). Температура электролита – 25°С; скорость развертки потенциала – 0.01 В/с.

Скачать (172KB)

© Российская академия наук, 2025