Effect of Coulomb correlations on the electronic structure of bulk V2Se2O: a DFT+DMFT study

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

We present results of density functional theory (DFT) plus dynamical mean-field theory (DFT+DMFT) calculations of the electronic structure of bulk paramagnetic V2Se2O.We show that local Coulomb correlations in the partially filled V 3d shells induce renormalizations of the DFT spectral functions close to the Fermi energy preserving their shape. These transformations are not accompanied by a spectral weight transfer to Hubbard bands, indicating a moderately correlated metallic state of bulk paramagnetic V2Se2O. The V 3d states exhibit a quasiparticle mass enhancement m∗/m ∼ 1.34 − 3.11 comparable to that in the isostructural compound V2Te2O. We demonstrate that orbital selectivity of correlation effects in V2Se2O is less pronounced compared to V2Te2O as can be traced from the weaker differentiation of m∗/m and local spin correlation functions for different V 3d orbitals. The analysis of the temperature dependence of the self-energy allows us to speculate on possible deviations from the Fermi-liquid behavior of V2Se2O.

About the authors

I. O Trifonov

M. N. Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences

Yekaterinburg, Russia

S. L Skornyakov

M. N. Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences; Ural Federal University

Email: skornyakov@imp.uran.ru
Yekaterinburg, Russia; Yekaterinburg, Russia

V. I Anisimov

M. N. Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences; Ural Federal University

Yekaterinburg, Russia; Yekaterinburg, Russia

References

  1. S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutierrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, ACS Nano 7, 2898 (2013).
  2. K. S. Novoselov, V. I. Fal'ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, Nature 490, 192 (2012).
  3. R. M. Fernandes, A. I. Coldea, H. Ding, I. R. Fisher, P. J. Hirschfeld, and G. Kotliar, Nature (London) 601, 35 (2022).
  4. M. V. Sadovskii, Phys.-Uspekhi 51, 1201 (2008).
  5. A. Ablimit, Y.-L. Sun, E.-J. Cheng, Ya-B. Liu, S.-Q. Wu, H. Jiang, Z. Ren, S. Li, and G.-H. Cao, Inorg. Chem. 57, 14617 (2018).
  6. H. Lin, J. Si, X. Zhu, K. Cai, H. Li, L. Kong, X. Yu, H.-H. Wen, Phys. Rev. B 98, 075132 (2018).
  7. H.-Y. Ma, M. Hu, N. Li, J. Liu, W. Yao, J.-F. Jia, and J. Liu, Nat. Commun. 12, 2846 (2021).
  8. Y.-X. Yu, Appl. Surf. Sci. 546, 149062 (2021).
  9. V. I. Anisimov, A. I. Poteryaev, M. A. Korotin, A. O. Anokhin, and G. Kotliar, J. Phys.: Condens. Matter 9, 7359 (1997).
  10. S. L. Skornyakov, I. O. Trifonov, and V. I. Anisimov, JETP Lett. 120, 525 (2024).
  11. A. V. Chubukov and D. L. Maslov, Phys. Rev. B 86, 155136 (2012).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences