Assessing the diversity of the human ig repertoire after B cell cryopreservation and restimulation

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Cryopreservation of human B cells is widely employed in various clinical and research applications. However, it is still commonly believed that only freshly isolated B cells should be utilized for subsequent analyses to accurately evaluate the natural immunoglobulin (Ig) repertoire in both quantitative and qualitative dimensions. In this study, we use next-generation sequencing to investigate how the Ig repertoire reshapes after the cryopreservation of B cells. Our focus centers on examining the proportional representation of the Ig repertoire after freeze-thawing, both with and without subsequent restimulation. Our research findings encourage scientists to conduct experiments on the Ig repertoire using cryopreserved, patient-derived B cells, underscoring the potential clinical and experimental applications of monitoring the Ig repertoire with cryopreserved B cells.

Texto integral

Acesso é fechado

Sobre autores

A. Smirnova

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: yasha.l@bk.ru
Rússia, 117997 Moscow

L. Ovchinnikova

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: yasha.l@bk.ru
Rússia, 117997 Moscow

I. Mamedov

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: yasha.l@bk.ru
Rússia, 117997 Moscow

T. Grigoreva

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: yasha.l@bk.ru
Rússia, 117997 Moscow

S. Khazeev

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: yasha.l@bk.ru
Rússia, 117997 Moscow

M. Akhmedova

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: yasha.l@bk.ru
Rússia, 117997 Moscow

Y. Lomakin

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: yasha.l@bk.ru
Rússia, 117997 Moscow

Bibliografia

  1. Tonegawa, S. (1983) Somatic generation of antibody diversity, Nature, 302, 575-581, https://doi.org/10.1038/ 302575a0.
  2. Zamecnik, C. R., Sowa, G. M., Abdelhak, A., Dandekar, R., Bair, R. D., Wade, K. J., Bartley, C. M., Kizer, K., Augusto, D. G., Tubati, A., Gomez, R., Fouassier, C., Gerungan, C., Caspar, C. M., Alexander, J., Wapniarski, A. E., Loudermilk, R. P., Eggers, E. L., Zorn, K. C., Ananth, K., Jabassini, N., Mann, S. A., Ragan, N. R., Santaniello, A., Henry, R. G., et al. (2024) An autoantibody signature predictive for multiple sclerosis, Nat. Med., 30, 1300-1308, https://doi.org/10.1038/s41591-024-02938-3.
  3. Sng, J., Ayoglu, B., Chen, J. W., Schickel, J.-N., Ferre, E. M. N., Glauzy, S., Romberg, N., Hoenig, M., Cunningham-Rundles, C., Utz, P. J., Lionakis, M. S., and Meffre, E. (2019) AIRE expression controls the peripheral selection of autoreactive B cells, Sci. Immunol., 4, eaav6778, https://doi.org/10.1126/sciimmunol.aav6778.
  4. Sanderson, N. S. R., Zimmermann, M., Eilinger, L., Gubser, C., Schaeren-Wiemers, N., Lindberg, R. L. P., Dougan, S. K., Ploegh, H. L., Kappos, L., and Derfuss, T. (2017) Cocapture of cognate and bystander antigens can activate autoreactive B cells, Proc. Natl. Acad. Sci. USA, 114, 734-739, https://doi.org/10.1073/pnas.1614472114.
  5. Lomakin, Y., Arapidi, G. P., Chernov, A., Ziganshin, R., Tcyganov, E., Lyadova, I., Butenko, I. O., Osetrova, M., Ponomarenko, N., Telegin, G., Govorun, V. M., Gabibov, A., and Belogurov, A. Jr. (2017) Exposure to the Epstein-Barr viral antigen latent membrane protein 1 induces myelin-reactive antibodies in vivo, Front. Immunol., 8, 777, https://doi.org/10.3389/fimmu.2017.00777.
  6. Lomakin, Y., Kudriaeva, A., Kostin, N., Terekhov, S., Kaminskaya, A., Chernov, A., Zakharova, M., Ivanova, M., Simaniv, T., Telegin, G., Gabibov, A., Belogurov, A. Jr. (2018) Diagnostics of autoimmune neurodegeneration using fluorescent probing, Sci. Rep., 8, 12679, https://doi.org/10.1038/s41598-018-30938-0.
  7. Ovchinnikova, L. A., Eliseev, I. E., Dzhelad, S. S., Simaniv, T. O., Klimina, K. M., Ivanova, M., Ilina, E. N., Zakharova, M. N., Illarioshkin, S. N., Rubtsov, Y. P., Gabibov, A. G., and Lomakin, Y. A. (2024) High heterogeneity of cross-reactive immunoglobulins in multiple sclerosis presumes combining of B-cell epitopes for diagnostics: a case-control study, Front. Immunol., 15, 1401156, https://doi.org/10.3389/fimmu.2024.1401156.
  8. DeKosky, B. J., Ippolito, G. C., Deschner, R. P., Lavinder, J. J., Wine, Y., Rawlings, B. M., Varadarajan, N., Giesecke, C., Dörner, T., Andrews, S. F., Wilson, P. C., Hunicke-Smith, S. P., Willson, C. G., Ellington, A. D., and Georgiou, G. (2013) High-throughput sequencing of the paired human immunoglobulin heavy and light chain repertoire, Nat. Biotechnol., 31, 166-169, https://doi.org/10.1038/nbt.2492.
  9. Turchaninova, M. A., Davydov, A., Britanova, O. V., Shugay, M., Bikos, V., Egorov, E. S., Kirgizova, V. I., Merzlyak, E. M., Staroverov, D. B., Bolotin, D. A., Mamedov, I. Z., Izraelson, M., Logacheva, M. D., Kladova, O., Plevova, K., Pospisilova, S., and Chudakov, D. M. (2016) High-quality full-length immunoglobulin profiling with unique molecular barcoding, Nat. Protoc., 11, 1599-1616, https://doi.org/10.1038/nprot.2016.093.
  10. Mikelov, A., Alekseeva, E. I., Komech, E. A., Staroverov, D. B., Turchaninova, M. A., Shugay, M., Chudakov, D. M., Bazykin, G. A., and Zvyagin, I. V. (2022) Memory persistence and differentiation into antibody-secreting cells accompanied by positive selection in longitudinal BCR repertoires, eLife, 11, e79254, https://doi.org/10.7554/eLife.79254.
  11. Phad, G. E., Pinto, D., Foglierini, M., Akhmedov, M., Rossi, R. L., Malvicini, E., Cassotta, A., Fregni, C. S., Bruno, L., Sallusto, F., and Lanzavecchia, A. (2022) Clonal structure, stability and dynamics of human memory B cells and circulating plasmablasts, Nat. Immunol., 23, 1076-1085, https://doi.org/10.1038/s41590-022-01230-1.
  12. Tian, X., Hong, B., Zhu, X., Kong, D., Wen, Y., Wu, Y., Ma, L., and Ying, T. (2022) Characterization of human IgM and IgG repertoires in individuals with chronic HIV-1 infection, Virol. Sin., 37, 370-379, https://doi.org/ 10.1016/j.virs.2022.02.010.
  13. Soto, C., Bombardi, R. G., Branchizio, A., Kose, N., Matta, P., Sevy, A. M., Sinkovits, R. S., Gilchuk, P., Finn, J. A., and Crowe, J. E. Jr. (2019) High frequency of shared clonotypes in human B cell receptor repertoires, Nature, 566, 398-402, https://doi.org/10.1038/s41586-019-0934-8.
  14. Lomakin, Y. A., Zvyagin, I. V., Ovchinnikova, L. A., Kabilov, M. R., Staroverov, D. B., Mikelov, A., Tupikin, A. E., Zakharova, M. Y., Bykova, N. A., Mukhina, V. S., Favorov, A. V., Ivanova, M., Simaniv, T., Rubtsov, Y. P., Chudakov, D. M., Zakharova, M. N., Illarioshkin, S. N., Belogurov, A. A. Jr., and Gabibov, A. G.(2022) Deconvolution of B cell receptor repertoire in multiple sclerosis patients revealed a delay in tBreg maturation, Front. Immunol., 13, 803229, https://doi.org/10.3389/fimmu.2022.803229.
  15. Lomakin, Y. A., Ovchinnikova, L. A., Terekhov, S. S., Dzhelad, S. S., Yaroshevich, I., Mamedov, I., Smirnova, A., Grigoreva, T., Eliseev, I. E., Filimonova, I. N., Mokrushina, Y. A., Abrikosova, V., Rubtsova, M. P., Kostin, N. N., Simonova, M. A., Bobik, T. V., Aleshenko, N. L., Alekhin, A. I., Boitsov, V. M., Zhang, H., Smirnov, I. V., Rubtsov, Y. P., and Gabibov, A. G. (2024) Two-dimensional high-throughput on-cell screening of immunoglobulins against broad antigen repertoires, Commun. Biol., 7, 842, https://doi.org/10.1038/s42003-024-06500-2.
  16. Sarkkinen, J., Yohannes, D. A., Kreivi, N., Dürnsteiner, P., Elsakova, A., Huuhtanen, J., Nowlan, K., Kurdo, G., Linden, R., Saarela, M., Tienari, P. J., Kekäläinen, E., Perdomo, M., and Laakso, S. M. (2025) Altered immune landscape of cervical lymph nodes reveals Epstein-Barr virus signature in multiple sclerosis, Sci. Immunol., 10, eadl3604, https://doi.org/10.1126/sciimmunol.adl3604.
  17. Greiff, V., Menzel, U., Miho, E., Weber, C., Riedel, R., Cook, S., Valai, A., Lopes, T., Radbruch, A., Winkler, T. H., and Reddy, S. T. (2017) Systems analysis reveals high genetic and antigen-driven predetermination of antibody repertoires throughout B cell development, Cell Rep., 19, 1467-1478, https://doi.org/10.1016/j.celrep. 2017.04.054.
  18. Shrock, E. L., Timms, R. T., Kula, T., Mena, E. L., West, A. P., Guo, R., Lee, I. H., Cohen, A. A., McKay, L. G. A., Bi, C., Leng, Y., Fujimura, E., Horns, F., Li, M., Wesemann, D. R., Griffiths, A., Gewurz, B. E., Bjorkman, P. J., and Elledge, S. J. (2023) Germline-encoded amino acid-binding motifs drive immunodominant public antibody responses, Science, 380, eadc9498, https://doi.org/10.1126/science.adc9498.
  19. Fischer, K., Lulla, A., So, T. Y., Pereyra-Gerber, P., Raybould, M. I. J., Kohler, T. N., Yam-Puc, J. C., Kaminski, T. S., Hughes, R., Pyeatt, G. L., Leiss-Maier, F., Brear, P., Matheson, N. J., Deane, C. M., Hyvönen, M., Thaventhiran, J. E. D., and Hollfelder, F. (2024) Rapid discovery of monoclonal antibodies by microfluidics-enabled FACS of single pathogen-specific antibody-secreting cells, Nat. Biotechnol., https://doi.org/10.1038/ s41587-024-02346-5.
  20. Briney, B., Inderbitzin, A., Joyce, C., and Burton, D. R. (2019) Commonality despite exceptional diversity in the baseline human antibody repertoire, Nature, 566, 393-397, https://doi.org/10.1038/s41586-019-0879-y.
  21. Zhou, X., Wang, H., Ji, Q., Du, M., Liang, Y., Li, H., Li, F., Shang, H., Zhu, X., Wang, W., Jiang, L., Stepanov, A. V., Ma, T., Gong, N., Jia, X., Gabibov, A. G., Lou, Z., Lu, Y., Guo, Y., Zhang, H., and Yang, X. (2021) Molecular deconvolution of the neutralizing antibodies induced by an inactivated SARS-CoV-2 virus vaccine, Protein Cell, 12, 818-823, https://doi.org/10.1007/s13238-021-00840-z.
  22. Gabibov, A. G., Belogurov, A. A., Lomakin, Y. A., Zakharova, M. Y., Avakyan, M. E., Dubrovskaya, V. V., Smirnov, I. V., Ivanov, A. S., Molnar, A. A., Gurtsevitch, V. E., Diduk, S. V., Smirnova, K.V., Avalle, B., Sharanova, S. N., Tramontano, A., Friboulet, A., Boyko, A. N., Ponomarenko, N. A., and Tikunova, N. V. (2011) Combinatorial antibody library from multiple sclerosis patients reveals antibodies that cross-react with myelin basic protein and EBV antigen, FASEB J., 25, 4211-4221, https://doi.org/10.1096/fj.11-190769.
  23. Wang, B., DeKosky, B. J., Timm, M. R., Lee, J., Normandin, E., Misasi, J., Kong, R., McDaniel, J. R., Delidakis, G., Leigh, K. E., Niezold, T., Choi, C. W., Viox, E. G., Fahad, A., Cagigi, A., Ploquin, A., Leung, K., Yang, E. S., Kong, W. P., Voss, W. N., Schmidt, A. G., Moody, M. A., Ambrozak, D. R., Henry, A. R., Laboune, F., et al. (2018) Functional interrogation and mining of natively paired human VH:VL antibody repertoires, Nat. Biotechnol., 36, 152-155, https://doi.org/10.1038/nbt.4052.
  24. Tawfik, D. S., and Griffiths, A. D. (1998) Man-made cell-like compartments for molecular evolution, Nat. Biotechnol., 16, 652-656, https://doi.org/10.1038/nbt0798-652.
  25. Georgiou, G., Ippolito, G. C., Beausang, J., Busse, C. E., Wardemann, H., and Quake, S. R. (2014) The promise and challenge of high-throughput sequencing of the antibody repertoire, Nat. Biotechnol., 32, 158-168, https://doi.org/10.1038/nbt.2782.
  26. Terekhov, S. S., Smirnov, I. V., Stepanova, A. V., Bobik, T. V., Mokrushina, Y. A., Ponomarenko, N. A., Belogurov, A. A. Jr., Rubtsova, M. P., Kartseva, O. V., Gomzikova, M. O., Moskovtsev, A. A., Bukatin, A. S., Dubina, M. V., Kostryukova, E. S., Babenko, V. V., Vakhitova, M. T., Manolov, A. I., Malakhova, M. V., Kornienko, M. A., Tyakht, A. V., Vanyushkina, A. A., Ilina, E. N., Masson, P., Gabibov, A. G., and Altman, S. (2017) Microfluidic droplet platform for ultrahigh-throughput single-cell screening of biodiversity, Proc. Natl. Acad. Sci. USA, 114, 2550-2555, https://doi.org/10.1073/pnas.1621226114.
  27. Zheng, G. X. Y., Terry, J. M., Belgrader, P., Ryvkin, P., Bent, Z. W., Wilson, R., Ziraldo, S. B., Wheeler, T. D., McDermott, G. P., Zhu, J., Gregory, M. T., Shuga, J., Montesclaros, L., Underwood, J. G., Masquelier, D. A., Nishimura, S. Y., Schnall-Levin, M., Wyatt, P. W., Hindson, C. M., Bharadwaj, R., Wong, A., Ness, K. D., Beppu, L. W., Deeg, H. J., McFarland, C., et al. (2017) Massively parallel digital transcriptional profiling of single cells, Nat. Commun., 8, 14049, https://doi.org/10.1038/ncomms14049.
  28. Costantini, A., Mancini, S., Giuliodoro, S., Butini, L., Regnery, C. M., Silvestri, G., and Montroni, M. (2003) Effects of cryopreservation on lymphocyte immunophenotype and function, J. Immunol. Methods, 278, 145-155, https://doi.org/10.1016/S0022-1759(03)00202-3.
  29. Schäfer, A. K., Waterhouse, M., Follo, M., Duque-Afonso, J., Duyster, J., Bertz, H., and Finke, J. (2020) Phenotypical and functional analysis of donor lymphocyte infusion products after long-term cryopreservation, Transfus. Apher. Sci., 59, 102594, https://doi.org/10.1016/j.transci.2019.06.022.
  30. Zhang, J., Yin, Z., Liang, Z., Bai, Y., Zhang, T., Yang, J., Li, X., and Xue, L. (2024) Impacts of cryopreservation on phenotype and functionality of mononuclear cells in peripheral blood and ascites, J. Transl. Intern. Med., 12, 51-63, https://doi.org/10.2478/jtim-2023-0136.
  31. Anderson, J., Toh, Z. Q., Reitsma, A., Do, L. A. H., Nathanielsz, J., and Licciardi, P. V. (2019) Effect of peripheral blood mononuclear cell cryopreservation on innate and adaptive immune responses, J. Immunol. Methods, 465, 61-66, https://doi.org/10.1016/j.jim.2018.11.006.
  32. Fecher, P., Caspell, R., Naeem, V., Karulin, A. Y., Kuerten, S., and Lehmann, P. V. (2018) B cells and B cell blasts withstand cryopreservation while retaining their functionality for producing antibody, Cells, 7, 50, https://doi.org/10.3390/cells7060050.
  33. Ticha, O., Moos, L., and Bekeredjian-Ding, I. (2021) Effects of long-term cryopreservation of PBMC on recovery of B cell subpopulations, J. Immunol. Methods, 495, 113081, https://doi.org/10.1016/j.jim.2021.113081.
  34. Jahnmatz, M., Kesa, G., Netterlid, E., Buisman, A.-M., Thorstensson, R., and Ahlborg, N. (2013) Optimization of a human IgG B-cell ELISpot assay for the analysis of vaccine-induced B-cell responses, J. Immunol. Methods, 391, 50-59, https://doi.org/10.1016/j.jim.2013.02.009.
  35. Bolotin, D. A., Poslavsky, S., Mitrophanov, I., Shugay, M., Mamedov, I. Z., Putintseva, E. V., and Chudakov, D. M. (2015) MiXCR: software for comprehensive adaptive immunity profiling, Nat. Methods, 12, 380-381, https://doi.org/10.1038/nmeth.3364.
  36. Shugay, M., Bagaev, D. V., Turchaninova, M. A., Bolotin, D. A., Britanova, O. V., Putintseva, E. V., Pogorelyy, M. V., Nazarov, V. I., Zvyagin, I. V., Kirgizova, V. I., Kirgizov, K. I., Skorobogatova, E. V., and Chudakov, D. M. (2015) VDJtools: unifying post-analysis of T cell receptor repertoires, PLoS Comput. Biol., 11, e1004503, https://doi.org/10.1371/journal.pcbi.1004503.
  37. Lefranc, M.-P., Pommié, C., Ruiz, M., Giudicelli, V., Foulquier, E., Truong, L., Thouvenin-Contet, V., and Lefranc, G. (2003) IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains, Dev. Comp. Immunol., 27, 55-77, https://doi.org/10.1016/S0145-305X(02)00039-3.
  38. Tipton, C. M., Fucile, C. F., Darce, J., Chida, A., Ichikawa, T., Gregoretti, I., Schieferl, S., Hom, J., Jenks, S., Feldman, R. J., Mehr, R., Wei, C., Lee, F. E., Cheung, W. C., Rosenberg, A. F., and Sanz, I. (2015) Diversity, cellular origin and autoreactivity of antibody-secreting cell population expansions in acute systemic lupus erythematosus, Nat. Immunol., 16, 755-765, https://doi.org/10.1038/ni.3175.
  39. Arpin, C., Banchereau, J., and Liu, Y.-J. (1997) Memory B cells are biased towards terminal differentiation: a strategy that may prevent repertoire freezing, J. Exp. Med., 186, 931-940, https://doi.org/10.1084/jem.186.6.931.
  40. Kyu, S. Y., Kobie, J., Yang, H., Zand, M. S., Topham, D. J., Quataert, S. A., Sanz, I., and Lee, F. E. (2009) Frequencies of human influenza-specific antibody secreting cells or plasmablasts post vaccination from fresh and frozen peripheral blood mononuclear cells, J. Immunol. Methods, 340, 42-47, https://doi.org/10.1016/j.jim.2008.09.025.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Evaluation of immunoglobulin clonotype diversity under different B-cell cryopreservation conditions. a – Average number of observed IGH (immunoglobulin heavy chain) clonotypes. Unique clonotypes are those that were detected in only one B-cell sample cryopreserved under the specified conditions. Common clonotypes are those that contain identical V, D, J, and C gene segments and the same H-CDR3 nucleotide sequence and are found in at least two different samples. Relative frequency of clonotypes (b) and reads (UMI) (c) obtained for clones with different abundance. Low-frequency clones are rare sequences that were read in the studied sample only once. Clones with multiple reads are sequences with two or more reads. Common clones are sequences found in the test sample and at least one of the freshly isolated B cell samples. Data are based on 3.5 × 104 randomly selected NGS reads for each replicate. Statistical significance of differences between samples was assessed using the Mann–Whitney U test. Significance levels: * p < 0.05 and ** p < 0.005. Legend: Original – B cells lysed in TRIzol immediately after isolation; Cryo – frozen-thawed B cells; 24 h – B cells stimulated in vitro for 24 h after thawing; 72 h – B cells stimulated in vitro for 72 h after thawing

Baixar (448KB)
3. Fig. 2. Effect of B-lymphocyte cryopreservation method on the distribution of immunoglobulin isotypes and the frequency of somatic hypermutations. a – UMI frequency; b – clonotype frequency. Stacked bar graphs showing the distribution of immunoglobulin isotypes in the total B-cell population: freshly isolated (Initial), after freezing and thawing (Cryo), and after stimulation for 24 or 72 h after thawing. c – Distribution of the frequency of somatic hypermutations in the variable domain of the immunoglobulin heavy chain (VH) under different experimental conditions, presented as violin plots. Two biological replicates are presented for each cryopreservation condition (biological replicates for each cryopreservation condition are highlighted in the same color). Data are presented as mean ± standard deviation (SD). Statistical significance of differences between groups was assessed using one-way analysis of variance (ANOVA). Significance levels: * p < 0.05; ** p < 0.005; **** p < 0.00005.

Baixar (377KB)
4. Fig. 3. Characterization of high-abundance clones. a – Distribution of read frequency (UMI) per clone. Clones were classified as high-abundance if their proportion exceeded 0.1% of the total number of reads in the replicate. Statistical significance: one-way ANOVA (**** p < 0.00005). Two biological replicates are presented for each cryopreservation condition (the replicate number is given in brackets to the right of the sample name). Relative distribution of immunoglobulin isotypes among high-abundance clones in B-cell samples obtained under different freeze-thaw conditions based on the number of UMI reads (b) and on the number of detected clonotypes (c). Designations: Original – B cells lysed in TRIzol immediately after isolation; Cryo – frozen-thawed B cells; 24 h – B cells stimulated in vitro for 24 h after thawing; 72 h – B cells stimulated in vitro for 72 h after thawing

Baixar (343KB)
5. Fig. 4. Frequencies of IGH germline genes in B cell samples obtained under different cryopreservation conditions. Scatter plot showing the correlation of variable heavy chain (VH) germline gene usage between two biological replicates of freshly isolated B cells, according to UMI count (a) or clonotype count (b). Frequencies of usage of different V (c), D (r), and J segments (d) of immunoglobulin heavy chains. Heat map displays the proportion of each identified gene segment for each B cell sample, with mean abundances indicated. Key: Original – B cells lysed in TRIzol immediately after isolation; Cryo – frozen-thawed B cells; 24 h – B cells stimulated in vitro for 24 h after thawing; 72 h – B cells stimulated in vitro for 72 h after thawing

Baixar (749KB)
6. Appendix 1
Baixar (12KB)
7. Appendix 2
Baixar (381KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025