Accumulation of Heavy Metals in Wetland Soils in an Urbanized Territory

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Wetlands are often called “nature’s kidneys” due to their ability to filter, metabolize and reduce pollutant levels, which is especially important in urban areas due to multifactorial anthropogenic impact. The levels of content and accumulation factors of Cu, Zn, Pb and Cd in soils and macrophytes of the McKay wetland located in North Vancouver (Canada) were studied. It was shown that among many factors affecting the content of heavy metals in wetland soils, the determining factor is the amount of autochthonous organic matter present in the soils and formed based on plant litter. The composition of the soils, the conditions of sorting the soil-forming material and the accumulation of heavy metals have pronounced heterogeneity. The granulometric composition of mineral particles of the soils does not have a significant effect on the accumulation of heavy metals.

作者简介

V. Kazmiruk

Water Problems Institute of Russian Academy of Sciences

Email: kazm@iwp.ru
Moscow, Russia

T. Kazmiruk

Simon Fraser University

编辑信件的主要联系方式.
Email: kazm@iwp.ru
Burnaby, Canada

参考

  1. Бреховских В.Ф., Казмирук Т.Н., Казмирук В.Д.2006. Донные отложения Иваньковского водохранилища: Состояние, состав, свойства. М.: Наука.
  2. Бреховских В.Ф., Казмирук В.Д., Вишневская Г.Н.2008. Биота в процессах массопереноса в водных объектах. М.: Наука.
  3. Казмирук В.Д.2021. Механизмы перехвата пластиковых микрочастиц буферными зонами из макрофитов // Геосистемы переходных зон. Т. 5(4). С. 378. https://doi.org/10.30730/gtrz.2021.5.4.378-388
  4. Состояние окружающей среды. Программа ООН по окружающей среде. 1980. М.: Изд-во ВИНИТИ.
  5. Цыренова Д.Ю.2024. Эколого-анатомическая характеристика растений прибрежных отмелей водотоков и водоемов Нижнего Приамурья // Биология внутр. вод. Т. 17. № 3. С. 410.
  6. Школьник М.Л.1974. Микроэлементы в жизни растений. Л.: Наука.
  7. Adelana A.O., Oluwatosin G.A., Agunbiade C. et al.2016. Distributions of cadmium and lead in peri-urban wetlands as influenced by soil organic matter, clay fraction, and moisture content // Cogent Food Agric. V. 2. P. 1159406. https://doi.org/10.1080/23311932.2016.1159406
  8. Ahmad N., Singh S.P., Sahu S. et al. 2024. Isotopic evidence of autochthonous organic matter acting as a major sink of anthropogenic heavy metals in modern lacustrine sediments // Environ. Pollut. V. 349. P. 123964. https://doi.org/10.1016/j.envpol.2024.123964
  9. Aldridge K.T., Ganf G.G.2003. Modification of sediment redox potential by three contrasting macrophytes: implications for phosphorus adsorption/desorption // Mar. Freshw. Res. V. 54(1). P. 87. https://doi.org/10.1071/MF02087
  10. Almeida C.M.R., Mucha A.P., Vasconcelos M.T.S.D.2006. Comparison of the role of the sea club-rushScirpus maritimusand the sea rushJuncus maritimusin terms of concentration, speciation and bioaccumulation of metals in the estuarine sediment // Environ. Pollut. V. 142(1). P. 151. https://doi.org/10.1016/j.envpol.2005.09.002
  11. Allinson G., Zhang P., Bui A. et al.2015. Pesticide and trace metal occurrence and aquatic benchmark exceedances in surface waters and sediments of urban wetlands and retention ponds in Melbourne, Australia // Environ. Sci. Pollut. Res. V. 22. P. 10214. https://doi.org/10.1007/s11356-015-4206-3
  12. Barlow C., Bendell L.I., Duckham C. et al.2014. Three-dimensional profiling reveals trace metal depositional patterns in sediments of urban aquatic environments: A case study in Vancouver, British Columbia, Canada // Water, Air and Soil Pollut. V. 225. P. 1855. https://doi.org/10.1007/s11270-013-1856-y
  13. Batley G.E., Simpson S.L.2016. Sediment sampling, sample preparation and general analysis // Sediment quality assessment: A practical guide. Clayton South, Australia: CSIRO Publ.
  14. Cambrollé J., Redondo-Gómez S., Mateos-Naranjo E., Figueroa M.E.2008.Comparison of the role of two Spartina species in terms of phytostabilization and bioaccumulation of metals in the estuarine sediment // Mar. Pollut. Bull. V. 56. P. 2037. https://doi.org/10.1016/j.marpolbul.2008.08.008
  15. Chakraborty P., Sarkar A., Vudamala K. et al.2015. Organic matter – A key factor in controlling mercury distribution in estuarine sediment // Mar. Chem. V. 173. P. 302.
  16. Charlesworth S., De Miguel E., Ordonez A.2010 Trace elements in urban environments: a review // Sedimentology of Aqueous Systems. Chichester: Wiley-Blackwell. https://doi.org/10.1002/9781444317114.ch4
  17. Dong A., Zhai Sh., Matthias Z. et al.2012. Heavy metals in Changjiang estuarine and offshore sediments: responding to human activities // Acta Oceanol. Sin. V. 31(2). P. 88. https://doi.org/10.1007/s13131-012-0195-y
  18. Frost P.C., Song K., Buttle J.M. et al.2015. Urban biogeochemistry of trace elements: What can the sediments of stormwater ponds tell us? // Urban Ecosyst. V. 18. P. 763. https://doi.org/10.1007/s11252-014-0428-2
  19. Gao Ch., Lin Q., Bao K. et al.2014. Historical variation and recent ecological risk of heavy metals in wetland sediments along Wusuli River, Northeast China // Environ. Earth. Sci. V. 72. P. 4345. https://doi.org/10.1007/s12665-014-3334-2
  20. Gibbs H.M.2013. The interactions between macrophytes and sediments in urban river systems. London: School of Geography, Queen Mary University of London.
  21. Horowitz A.J.1991. Primer on sediment – trace element chemistry. Boca Raton: CRC Press.
  22. Jacob D.L., Otte M.L.2003. Conflicting processes in the wetland plant rhizosphere: metal retention or mobilization? // Water, Air and Soil Pollut. V. 3. P. 91. https://doi.org/10.1023/A:1022138919019
  23. Jakob M., Weatherly H.2003. A hydroclimatic threshold for landslide initiation on the North Shore Mountains of Vancouver, British Columbia // Geomorphology. V. 54. P. 137. https://doi.org/10.1016/S0169-555X(02)00339-2
  24. Kazmiruk V.D.2023. Artificial wetlands: Current trends and prospects // Power Technol. Eng. V. 57(1). P. 22. https://doi.org/10.1007/s10749-023-01618-5
  25. Lacerda L.D., Freixo J.L., Coelho S.M.1997. The effect ofSpartina alternifloraLoisel on trace metals accumulation in inter-tidal sediments // Mangroves and Salt Marshes. V. 1. P. 201. https://doi.org/10.1023/A:1009990604727
  26. Li H., Shi A., Zhang X.2015. Particle size distribution and characteristics of heavy metals in road-deposited sediments from Beijing Olympic Park // J. Environ. Sci. V. 32. P. 228. http://dx.doi.org/10.1016/j.jes.2014.11.014
  27. Men C., Wang Y., Liu R. et al.2021. Temporal variations of levels and sources of health risk associated with heavy metals in road dust in Beijing from May 2016 to April 2018 // Chemosphere. V. 270. P. 129434. https://doi.org/10.1016/j.chemosphere.2020.129434
  28. Mesquita G.S., Passos E.A., Oliveira S.S. et al.2024.Geochemical base for As, Co, Cu, Ni, P, Pb, S, V and Zn in road dust collected in areas of oil industry activity in the Metropolitan Region of Salvador, Bahia, Brazil // Microchem. J. V. 200. 110304. https://doi.org/10.1016/j.microc.2024.110304
  29. Michaud S.C., Richardson C.J.1989. Relative radial oxygen loss in five wetland plants // Constructed Wetlands for Wastewater Treatment: Municipal, Industrial and Agricultural. Michigan, USA: Lewis Publ.
  30. Mudroch A., Azcue J.M., Mudroch P. 1997. Manual of physico-chemical analysis of aquatic sediments. N.Y.; USA: Lewis Publ.
  31. Nriagu J.O., Pacuna J.M.1988. Quantitative assessment of worldwide contamination of air, water and soils by trace metals // Nature. V. 333(6169). P. 134. http://dx.doi.org/10.1038/333134a0
  32. Reddy K.R., D’Angelo E.M., DeBusk T.A.1990. Oxygen transport through aquatic macrophytes: The role in wastewater treatment. // J. Environ. Qual. V. 19(2). P. 261. https://doi.org/10.2134/jeq1990.00472425001900020011x
  33. Steinberg S.L., Coonrod H.S. 1994. Oxidation of the root zone by aquatic plants growing in gravel-nutrient solution culture // J. Environ. Qual. V. 23(5). P. 907. https://doi.org/10.2134/jeq1994.00472425002300050009x
  34. Thomson R.E.1981. Oceanography of the British Columbia Coast. Canadian Special Publication of Fisheries and Aquatic Sciences. 56.
  35. Ujević I., Odžak N., Barić F.2000. Trace metal accumulation in different grain size fractions of the sediments from a semi-enclosed bay heavily contaminated by urban and industrial wastewaters // Water Res. V. 34(11). P. 3055. https://doi.org/10.1016/S0043-1354(99)00376-0
  36. Van Metre P.C., Mesnage V., Laignel B. et al.2008. Origins of sediment-associated contaminants to the Marais Vernier, the Seine Estuary, France // Water, Air and Soil Pollut. V. 91. P. 331. 10.1007/s11270-008-9628-9' target='_blank'>https://doi: 10.1007/s11270-008-9628-9
  37. Visser E.J.W., Colmer T.D., Blom C.W.P.M., Voesenek L.A.C.J.2000. Changes in growth, porosity, and radial oxygen loss from adventitious roots of selected mono- and dicotyledonous wetland species with contrasting types of aerenchyma // Plant Cell Environ. V. 23(11). P. 1237. https://doi.org/10.1046/j.1365-3040.2000.00628.x
  38. Wang G.-P., Zhai Z.-L.2008. Geochemical data as indicators of environmental change and huma impact in sediments derived from downstream marshes of an ephemeral river, Northeast China // Environ. Geol. V. 53(6). P. 1261. https://doi.org/10.1007/s00254-007-0714-x
  39. Yan C., Zhuang T., Bai J. et al.2020. Assessment of As, Cd, Zn, Cu and Pb pollution and toxicity in river wetland sediments and artificial wetland soils affected by urbanization in a Chinese Delta // Wetlands. V. 40(6). P. 2799. https://doi.org/10.1007/s13157-020-01330-4
  40. Yousif Y.M., Mutter T.Y., Hassan O.M.2024. Health risks and environmental assessments of heavy metals in road dust of Ramadi, Iraq // J. Degrade. Min. Land Manage. V. 11(2). P. 5301. https://doi.org/10.15243/jdmlm.2024.112.5301

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025