Causes of brain aging and age-related changes in cognitive functions and the diversity of object models for studying these causes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Due to the development of medicine and the improvement of the standard of living in the world, the proportion of the elderly population is increasing, so the study of the mechanisms of age-related changes in cognitive functions seems to be an urgent task. The purpose of this review is to provide data on the mechanisms of age-related changes in cognitive functions and to draw a conclusion on possible further directions of research in this area. The review presents modern theories of cognitive aging (reserve theory, compensatory theory, frontal lobe aging theory, inhibition deficit theory, sensory deprivation theory). Particular attention is paid to the molecular and genetic aspects of cognitive aging of the brain: the role of DNA integrity disorders and individual characteristics of DNA tandem repeats in connection with the dynamics of cognitive functions and aging of the nervous system are discussed, and the role of gene expression (BDNF, Rag1, APOE, etc.), which are associated with changes in cognitive functions, is considered. The novelty of this work is determined by the reliance on modern scientific literature, which allows us to identify promising areas for further study of the topic. These areas include the study of individual genes and molecular markers in terms of changes in their expression with age (such as mitogens EGF and FGF, neurotrophic factors BDNF, NGF, GDNF, synapsins, Rag1, APOE, etc.) and the study of the role of tandem repeats of the genome, including those located on satellite DNA (not many studies have been devoted to this topic). Understanding the mechanisms of cognitive aging at different levels of the body can contribute to the development of effective methods for the prevention and treatment of cognitive impairment.

About the authors

P. E. Umriukhin

I.M. Sechenov First Moscow State Medical University (Sechenov University); Research Centre for Medical Genetics (RCMG)

Email: pavelum@mail.ru
Moscow, 119048 Russia; Moscow, 125993 Russia

N. Y. Shabalin

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: nsdominik@mail.ru
Moscow, 119048 Russia

E. N. Mikheeva

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: kefir2018@mail.ru
Moscow, 119048 Russia

N. N. Veiko

Research Centre for Medical Genetics (RCMG)

Email: satelit32006@yandex.ru
Moscow, 125993 Russia

S. V. Kostyuk

Research Centre for Medical Genetics (RCMG)

Email: svet-vk@yandex.ru
Moscow, 125993 Russia

References

  1. Величковский Б.М., Боринская С.А., Варта- нов А.В. др. Нейрокогнитивные особенности носителей аллеля ε4 гена аполипопротеина Е (APOE) // Теоретическая и экспериментальная психология. 2009. Т. 2. № 4. С. 25–37.
  2. Мошетова Л.К., Абрамова О.И., Туркина К.И. и др. От клеточного старения до возрастной макулярной дегенерации: роль теломер // РМЖ. Клиническая офтальмология. 2020. Т. 20. № 3. С. 148–151. https://doi.org/10.32364/2311-7729-2020-20-3-148-151
  3. Павлов К.И., Мухин В.Н., Клименко В.М., Анисимов В.Н. Система теломера-теломераза и психические процессы при старении, в норме и патологии (обзор литературы) // Успехи геронтологии. 2017. Т. 30. № 1. С. 17–26.
  4. Разумникова О.М. Закономерности старения мозга и способы активации его компенсаторных ресурсов // Успехи физиол. наук. 2015. Т. 46. № 2. С. 3–16.
  5. Третьякова В.Д. Возрастные изменения в мозге и факторы влияющие на них // Бюллетень науки и практики. 2022. V. 8. № https://doi.org/10.33619/2414 2948/80/20
  6. Третьякова В.Д., Пульцина К.И. Старение мозга: ключевые теории и нейрофизиологические инсайты // Клиническая и специальная психология. 2024. Т. 13. № 4. С. 5–28. doi: 10.17759/cpse.2024130401
  7. Чердак М.А. Механизмы нейрокогнитивной адаптации при старении // Проблемы геронауки. 2023. № 2. С. 94–101. https://doi.org/10.37586/2949-4745-2-2023-94-101
  8. Широкова И.В. Исторические аспекты становления понятия «Исполнительные функции». Обзор иностранных источников // Комплексные исследования детства. 2022. Т. 4. № 4. С. 333–336. https://orcid.org/0000-0003-1556-5584
  9. Amano H., Chaudhury A., Rodriguez-Agu- ayo C. et al. Telomere dysfunction induces sirtuin repression that drives telomere-dependent dise- ase // Cell metabolism. 2019. V. 29. № 6. P. 1274–1290. e9. https://doi.org/10.1016/j.cmet.2019.03.001
  10. Andrews M.G., Subramanian L., Kriegstein A.R. mTOR signaling regulates the morphology and migration of outer radial glia in developing human cortex // Elife. 2020. V. 9. P. e58737. https://doi.org/10.7554/eLife.58737
  11. Anthony M., Lin F. A systematic review for functional neuroimaging studies of cognitive reserve across the cognitive aging spectrum //Archives of Clinical Neuropsychology. 2018. V. 33. № 8. P. 937–948. https://doi.org/10.1093/arclin/acx125
  12. Arce Rentería M., Vonk J.M., Felix G. et al. Illiteracy, dementia risk, and cognitive trajectories among older adults with low education // Neurology. 2019. V. 93. № 24. P. e2247–e2256. https://doi.org/10.1212/WNL.0000000000008587
  13. Baker D., Childs B., Durik M. et al. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan // Nature. 2016. V. 530. № 7589. P. 184–189. https://doi.org/10.1038/nature16932
  14. Baker D., Wijshake T., Tchkonia T. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders // Nature. 2011. V. 479. № 7372. P. 232–236. https://doi.org/10.1038/nature10600
  15. Bektas A., Schurman S.H., Sen R., Ferrucci L. Aging, inflammation and the environment // Experimental gerontology. 2018. V. 105. P. 10–18. https://doi.org/10.1016/j.exger.2017.12.015
  16. Berchtold N.C., Coleman P.D., Cribbs D.H. et al. Synaptic genes are extensively downregulated across multiple brain regions in normal human aging and Alzheimer's disease // Neurobiology of aging. 2013. V. 34. № 6. P. 1653–1661. https://doi.org/10.1016/j.neurobiolaging.2012.11.024
  17. Birch J., Gil J. Senescence and the SASP: Many therapeutic avenues // Genes & development. 2020. V. 34. № 23–24. P. 1565–1576. https://doi.org/10.1101/gad.343129.120
  18. Budni J., Bellettini-Santos T., Mina F. et al. The involvement of BDNF, NGF and GDNF in aging and Alzheimer’s disease // Aging and disease. 2015. V. 6. № 5. P. 331. https://doi.org/10.14336/AD.2015.0825
  19. Cabeza R., Albert M., Belleville S. et al. Cognitive neuroscience of healthy aging: Maintenance, reserve, and compensation // Nature Reviews. Neuroscience. 2018. V. 19. № 11. P. 701. https://doi.org/10.1038/s41583-018-0068-2
  20. Campbell K.L., Lustig C., Hasher L. Aging and inhibition: Introduction to the special issue // Psychology and Aging. 2020. V. 35. № 5. P. 605. https://doi.org/10.1037/pag0000564
  21. Castro-Pérez E., Emilio Soto-Soto E., Marizabeth Pérez-Carambot M. et al. Identification and characterization of the V (D) J recombination activating gene 1 in long-term memory of context fear conditioning // Neural Plasticity. 2016. V. 2016. 1752176 https://doi.org/10.1155/2016/1752176
  22. Cherbuin N., Kim S., Anstey K.J. Dementia risk estimates associated with measures of depression: A systematic review and meta-analysis // BMJ Open. 2015. V. 5. № 12. P. e008853. https://doi.org/10.1136/bmjopen-2015-008853
  23. Cohen-Manheim I., Doniger G.M., Sinnreich R. et al. Increased attrition of leukocyte telomere length in young adults is associated with poorer cognitive function in midlife // European journal of epidemiology. 2016. V. 31. P. 147–157. https://doi.org/10.1007/s10654-015-0051-4
  24. Crowe S.L., Movsesyan V.A., Jorgensen T.J., Kondratyev A. Rapid phosphorylation of histone H2A. X following ionotropic glutamate receptor activation // European Journal of Neuroscience. 2006. V. 23. № 9. P. 2351–2361. https://doi.org/10.1111/j.1460-9568.2006.04768.x
  25. Daniele S., Giacomelli C., Martini C. Brain ageing and neurodegenerative disease: The role of cellular waste management // Biochemical pharmacology. 2018. V. 158. P. 207–216. https://doi.org/10.1016/j.bcp.2018.10.030
  26. de Jager P.L., Srivastava G., Lunnon K. et al. Alzheimer's disease: Early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci // Nature neuroscience. 2014. V. 17. № 9. P. 1156–1163. https://doi.org/10.1038/nn.3786
  27. De Lucia C., Murphy T., Steves C.J. et al. Lifestyle mediates the role of nutrient-sensing pathways in cognitive aging: Cellular and epidemiological evidence // Communications Biology. 2020. V. 3. № 1. P. 157. https://doi.org/10.1038/s42003-020-0844-1
  28. Emrani S., Arain H.A., DeMarshall C., Nuriel T. APOE4 is associated with cognitive and pathological heterogeneity in patients with Alzheimer’s disease: A systematic review //Alzheimer's research & therapy. 2020. V. 12. № 1. P. 141. https://doi.org/10.1186/s13195-020-00712-4
  29. Ferguson H.J., Brunsdon V.E.A., Bradford E.E.F. The developmental trajectories of executive function from adolescence to old age // Scientific reports. 2021. V. 11. № 1. P. 1382. https://doi.org/10.1038/s41598-020-80866-1
  30. Fischer M.E., Cruickshanks K.J., Schubert C.R. et al. Age-related sensory impairments and risk of cognitive impairment // Journal of the American Geriatrics Society. 2016. Т. 64. № 10. P. 1981–1987. https://doi.org/10.1111/jgs.14308
  31. Gaspar-Silva F., Trigo D., Magalhaes J. Ageing in the brain: Mechanisms and rejuvenating strategies // Cellular and Molecular Life Sciences. 2023. V. 80. № 7. P. 1–21. https://doi.org/10.1007/s00018-023-04832-6
  32. Geerligs L., Saliasi E., Maurits N.M. et al. Brain mechanisms underlying the effects of aging on different aspects of selective attention // NeuroImage. 2014. V. 91. P. 52–62. https://doi.org/10.1016/j.neuroimage.2014.01.029
  33. Gollihue J.L., Norris C.M. Astrocyte mitochon-dria: Central players and potential therapeutic targets for neurodegenerative diseases and inju- ry // Ageing research reviews. 2020. V. 59. P. 101039. https://doi.org/10.1016/j.arr.2020.101039
  34. Guo J., Huang X., Dou L. et al. Aging and aging-related diseases: From molecular mechanisms to interventions and treatments // Signal Transduction and Targeted Therapy. 2022. V. 7. № 1. P. 391. https://doi.org/10.1038/s41392-022-01251-0
  35. Han B., Chen H., Yao Y. et al. Genetic and non-genetic factors associated with the phenotype of exceptional longevity & normal cognition // Scientific Reports. 2020. V. 10. № 1. P. 19140. https://doi.org/10.1038/s41598-020-75446-2
  36. Han R., Liang J., Zhou B. Glucose metabolic dysfunction in neurodegenerative diseases — new mechanistic insights and the potential of hypoxia as a prospective therapy targeting metabolic reprogramming // International Journal of Molecular Sciences. 2021. V. 22. № 11. P. 5887. https://doi.org/10.3390/ijms22115887
  37. Hardcastle C., O’Shea A., Kraft J.N. et al. Contributions of hippocampal volume to cognition in healthy older adults // Frontiers in aging neuroscience. 2020. V. 12. P. 593833. https://doi.org/10.3389/fnagi.2020.593833
  38. Hartshorne J.K., Germine L.T. When does cognitive functioning peak? The asynchronous rise and fall of different cognitive abilities across the life span // Psychological science. 2015. V. 26. № 4. P. 433–443. https://doi.org/10.1177/0956797614567339
  39. Hou Y., Dan X., Babbar M. et al. Ageing as a risk factor for neurodegenerative disease // Nature Reviews Neurology. 2019. V. 15. № 10. P. 565–581. https://doi.org/10.1038/s41582-019-0244-7
  40. Jucker M. The benefits and limitations of animal models for translational research in neurodegenerative diseases // Nature medicine. 2010. V. 16. № 11. P. 1210–1214. https://doi.org/10.1038/nm.2224
  41. Kalpouzos G., Rizzuto D., Keller L. et al. Telomerase gene (hTERT) and survival: results from two Swedish cohorts of older adults // Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences. 2016. V. 71. № 2. P. 188–195. https://doi.org/10.1093/gerona/glu222
  42. Kase Y., Shimazaki T., Okano H. Current understanding of adult neurogenesis in the mammalian brain: How does adult neurogenesis decrease with age? // Inflammation and regeneration. 2020. V. 40. P. 1–6. https://doi.org/10.1186/s41232-020-00122-x
  43. Kepchia D., Huang L., Dargusch R. et al. Diverse proteins aggregate in mild cognitive impairment and Alzheimer’s disease brain // Alzheimer's research & therapy. 2020. V. 12. № 1. P. 1–20. https://doi.org/10.1186/s13195-020-00641-2
  44. Kirova A.M., Bays R.B., Lagalwar S. Working memory and executive function decline across normal aging, mild cognitive impairment, and Alzheimer’s disease // BioMed research international. 2015. V. 2015. № 1. P. 748212. https://doi.org/10.1155/2015/748212
  45. Konopka A., Atkin J.D. The role of DNA damage in neural plasticity in physiology and neurodegeneration // Frontiers in Cellular Neuroscience. 2022. V. 16. P. 836885. https://doi.org/10.3389/fncel.2022.836885
  46. Leong R.L.F., Lo J.C., Sim S.K.Y. et al. Longitudinal brain structure and cognitive changes over 8 years in an East Asian cohort // Neuroimage. 2017. V. 147. P. 852–860. https://doi.org/10.1016/j.neuroimage.2016.10.016
  47. Li H., Hirano S., Furukawa S. et al. The relationship between the striatal dopaminergic neuronal and cognitive function with aging // Frontiers in aging neuroscience. 2020. V. 12. P. 41. https://doi.org/10.3389/fnagi.2020.00041
  48. Liguori I., Russo G., Curcio F. et al. Oxidative stress, aging, and diseases // Clinical interventions in aging. 2018. P. 757–772. https://doi.org/10.2147/CIA.S158513
  49. López-Otín C., Blasco M.A., Partridge L., Serra- no M. The hallmarks of aging // Cell. 2013. V. 153. № 6. P. 1194–1217. https://doi.org/10.1016/j.cell.2013.05.039
  50. Lunnon K., Smith R., Hannon E. et al. Methylomic profiling implicates cortical deregulation of ANK1 in Alzheimer's disease // Nature neuroscience. 2014. V. 17. № 9. P. 1164–1170. https://doi.org/10.1038/nn.3782
  51. Ma A., Dai X. The relationship between DNA single-stranded damage response and double-stranded damage response // Cell Cycle. 2018. V. 17. № 1. P. 73–79. https://doi.org/10.1080/15384101.2017.1403681
  52. Ma S.L., Lau E.S.S., Suen E.W.C. et al. Telomere length and cognitive function in southern Chinese community-dwelling male elders // Age and ageing. 2013. V. 42. № 4. P. 450–455. https://doi.org/10.1093/ageing/aft036
  53. Maharani A., Pendleton N., Leroi I. Hearing impairment, loneliness, social isolation, and cognitive function: Longitudinal analysis using English longitudinal study on ageing // The American Journal of Geriatric Psychiatry. 2019. V. 27. № 12. P. 1348–1356. https://doi.org/10.1016/j.jagp.2019.07.010
  54. McGrattan A.M., McGuinness B., McKinley M.C. et al. Diet and inflammation in cognitive ageing and Alzheimer’s disease // Current nutrition reports. 2019. V. 8. P. 53–65. https://doi.org/10.1007/s13668-019-0271-4
  55. McKinnon P.J. Topoisomerases and the regulation of neural function // Nature Reviews Neuroscience. 2016. V. 17. № 11. P. 673–679. https://doi.org/10.1038/nrn.2016.101
  56. Möller C., Hafkemeijer A., Pijnenburg Y.A.L. et al. Different patterns of cortical gray matter loss over time in behavioral variant frontotemporal dementia and Alzheimer's disease // Neurobiology of aging. 2016. V. 38. P. 21–31. https://doi.org/10.1016/j.neurobiolaging.2015.10.020
  57. Murman D.L. The impact of age on cognition // Seminars in hearing. Thieme Medical Publishers. 2015. V. 36. № 03. P. 111–121. https://doi.org/10.1055/s-0035-1555115
  58. Negredo P.N., Yeo R.W., Brunet A. Aging and rejuvenation of neural stem cells and their niches // Cell stem cell. 2020. V. 27. № 2. P. 202–223. https://doi.org/10.1016/j.stem.2020.07.002
  59. Nettiksimmons J., Ayonayon H., Harris T. et al. Development and validation of risk index for cognitive decline using blood-derived markers // Neurology. 2015. V. 84. № 7. P. 696–702. https://doi.org/10.1212/WNL.0000000000001263
  60. Oosterhuis E.J., Slade K., May P.J.C. et al. Toward an understanding of healthy cognitive aging: The importance of lifestyle in cognitive reserve and the scaffolding theory of aging and cognition // The Journals of Gerontology: Series B. 2023. V. 78. № 5. P. 777–788. https://doi.org/10.1093/geronb/gbac197
  61. Park D.C., Festini S.B. Theories of memory and aging: A look at the past and a glimpse of the future // Journals of Gerontology Series B: Psychological Sciences and Social Sciences. 2017. V. 72. № 1. P. 82–90. https://doi.org/10.1093/geronb/gbw066
  62. Pettigrew C., Soldan A. Defining cognitive reserve and implications for cognitive aging // Current neurology and neuroscience reports. 2019. V. 19. P. 1–12. https://doi.org/10.1007/s11910-019-0917-z
  63. Pietzuch M., King A.E., Ward D.D., Vickers J.C. The influence of genetic factors and cognitive reserve on structural and functional resting-state brain networks in aging and Alzheimer’s disease // Frontiers in aging neuroscience. 2019. V. 11. P. 30. https://doi.org/10.3389/fnagi.2019.00030
  64. Polidori M.C. Embracing complexity of (brain) aging // FEBS letters. 2024. V. 598. № 17. P. 2067–2073. https://doi.org/10.1002/1873-3468.14941
  65. Porokhovnik L.N., Veiko N.N., Ershova E.S., Kostyuk S.V. The role of human satellite III (1q12) copy number variation in the adaptive response during aging, stress, and pathology: a pendulum model // Genes. 2021. V. 12. № 10. P. 1524. https://doi.org/10.3390/genes12101524
  66. Réus G.Z., Abaleira H.M., Michels M. et al. Anxious phenotypes plus environmental stressors are related to brain DNA damage and changes in NMDA receptor subunits and glutamate uptake // Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2015. V. 772. P. 30–37. https://doi.org/10.1016/j.mrfmmm.2014.12.005
  67. Reuter-Lorenz P.A., Park D.C. Cognitive aging and the life course: A new look at the scaffolding theory // Current Opinion in Psychology. 2023. P. 101781. https://doi.org/10.1016/j.copsyc.2023.101781
  68. Rossiello F., Jurk D., Passos J.F. et al. Telomere dysfunction in ageing and age-related diseases // Nature cell biology. 2022. V. 24. № 2. P. 135–147. https://doi.org/10.1038/s41556-022-00842-x
  69. Ruthruff E., Lien M.C. Aging and attention // Encyclopedia of geropsychology. 2016. P. 1–7. https://doi.org/10.1007/978-981-287-080-3_227-1
  70. Sakata K., Duke S.M. Lack of BDNF expression through promoter IV disturbs expression of monoamine genes in the frontal cortex and hippocampus // Neuroscience. 2014. V. 260. P. 265–275. https://doi.org/10.1016/j.neuroscience.2013.12.013
  71. Sakata K., Overacre A.E. Promoter IV-BDNF deficiency disturbs cholinergic gene expression of CHRNA 5, CHRM 2, and CHRM 5: Effects of drug and environmental treatments // Journal of neurochemistry. 2017. V. 143. № 1. P. 49–64. https://doi.org/10.1111/jnc.14129
  72. Salthouse T. A. Selective review of cognitive aging // Journal of the International neuropsychological Society. 2010. V. 16. № 5. P. 754–760. https://doi.org/10.1017/S1355617710000706
  73. Salthouse T.A. The processing-speed theory of adult age differences in cognition // Psychological review. 1996. V. 103. № 3. P. 403. https://doi.org/10.1037/0033-295X.103.3.403
  74. Sanchez-Mut J.V., Heyn H., Vida E. et al. Human DNA methylomes of neurodegenerative diseases show common epigenomic patterns // Translational psychiatry. 2016. V. 6. № 1. P. e718–e718. https://doi.org/10.1038/tp.2015.214
  75. Saxton R.A., Sabatini D.M. mTOR signaling in growth, metabolism, and disease // Cell. 2017. V. 168. № 6. P. 960–976. https://doi.org/10.1016/j.cell.2017.02.004
  76. Shay J.W., Wright W.E. Telomeres and telomerase: three decades of progress // Nature Reviews Genetics. 2019. V. 20. № 5. P. 299–309. https://doi.org/10.1038/s41576-019-0099-1
  77. Sikora E., Bielak-Zmijewska A., Dudkowska M. et al. Cellular senescence in brain aging // Frontiers in Aging Neuroscience. 2021. V. 13. P. 646924. https://doi.org/10.3389/fnagi.2021.646924
  78. Soto-Palma C., Niedernhofer L.J., Faulk C.D., Dong X. Epigenetics, DNA damage, and aging // The Journal of clinical investigation. 2022. V. 132. № 16. https://doi.org/10.1172/JCI158446.
  79. Stern Y., Barnes C.A., Grady C. et al. Brain reserve, cognitive reserve, compensation, and maintenance: Operationalization, validity, and mechanisms of cognitive resilience // Neurobiology of aging. 2019. V. 83. P. 124–129. https://doi.org/10.1016/j.neurobiolaging.2019.03.022
  80. Stott R.T., Kritsky O., Tsai L.H. Profiling DNA break sites and transcriptional changes in response to contextual fear learning // PLoS One. 2021. V. 16. № 7. P. e0249691. https://doi.org/10.1371/journal.pone.0249691
  81. Swerdlow R.H. The mitochondrial hypothesis: Dysfunction, bioenergetic defects, and the metabolic link to Alzheimer's disease // International review of neurobiology. 2020. V. 154. P. 207–233. https://doi.org/10.1016/bs.irn.2020.01.008
  82. Trigo D., Nadais A., Carvalho A. et al. Mitochon-dria dysfunction and impaired response to oxidative stress promotes proteostasis disruption in aged human cells // Mitochondrion. 2023. V. 69. P. 1–9. https://doi.org/10.1016/j.mito.2022.10.002
  83. Tripp A., Oh H., Guilloux J. P. et al. Brain-derived neurotrophic factor signaling and subgenual anterior cingulate cortex dysfunction in major depressive disorder // American Journal of Psychiatry. 2012. V. 169. № 11. P. 1194–1202. https://doi.org/10.1176/appi.ajp.2012.12020248
  84. Uyeda A., Onishi K., Hirayama T. et al. Suppres-sion of DNA double-strand break formation by DNA polymerase β in active DNA demethylation is required for development of hippocampal pyramidal neurons // Journal of Neuroscience. 2020. V. 40. № 47. P. 9012–9027. https://doi.org/10.1523/JNEUROSCI.0319-20.2020
  85. Veiko N.N., Ershova E.S., Veiko R.V., Umriukhin P. E. et al. Mild cognitive impairment is associated with low copy number of ribosomal genes in the genomes of elderly people // Frontiers in genetics. 2022. V. 13. P. 967448. https://doi.org/10.3389/fgene.2022.967448
  86. Verhaeghen P. Aging and executive control: Reports of a demise greatly exaggerated // Current Directions in Psychological Science. 2011. V. 20. № 3. P. 174–180. https://doi.org/10.1177/0963721411408772
  87. Verkhratsky A., Zorec R. Neuroglia in cognitive reserve // Molecular Psychiatry. 2024. P. 1–6. https://doi.org/10.1038/s41380-024-02644-z
  88. Wang Y., Du Y., Li J., Qiu C. Lifespan intellec- tual factors, genetic susceptibility, and cogni-tive phenotypes in aging: Implications for interventions // Frontiers in Aging Neuroscience. 2019. V. 11. P. 129. https://doi.org/10.3389/fnagi.2019.00129
  89. Welch G., Tsai L.H. Mechanisms of DNA damage-mediated neurotoxicity in neurodegenerative disease // EMBO reports. 2022. V. 23. № 6. P. e54217. https://doi.org/10.15252/embr.202154217
  90. Welty S., Teng Y., Liang Z. et al. RAD52 is required for RNA-templated recombination repair in post-mitotic neurons // Journal of Biological Chemistry. 2018. V. 293. № 4. P. 1353–1362. https://doi.org/10.1074/jbc.M117.808402
  91. Yu H., Su Y., Shin J. et al. Tet3 regulates synaptic transmission and homeostatic plasticity via DNA oxidation and repair // Nature neuroscience. 2015. V. 18. № 6. P. 836–843. https://doi.org/10.1038/nn.4008
  92. Zanto T.P., Gazzaley A. Aging of the frontal lobe // Handbook of clinical neurology. 2019. V. 163. P. 369–389. https://doi.org/10.1016/B978-0-12-804281-6.00020-3
  93. Zhang W., Chen Y., Yang X. et al. Functional haplotypes of the hTERT gene, leukocyte telomere length shortening, and the risk of peripheral arterial disease // PLoS One. 2012. V. 7. № 10. P. e47029 https://doi.org/10.1371/journal.pone.004702

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences