Vortex electromagnetic waves: radiation, receiving, perspectives of application

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A review of achievements in the field of research of electromagnetic waves with spiral phase front and their applications is presented. Known methods of radiation and receiving of such waves are considered, as well as their application to increase the efficiency of frequency spectrum use in radio communication systems due to simultaneous transmission of signals on several vortex modes with different angular indices, to improve the performance of radar systems with synthetic aperture by obtaining additional information, methods of reducing backscattering of radar objects. The ways of further research are discussed.

Texto integral

Acesso é fechado

Sobre autores

M. Azarov

Institute of Microdevices and Control Systems (MCS) National Research University of Electronic Technology (MIET)

Email: vak@cplire.ru
Rússia, Zelenograd, Moscow, Shokin Squar., 1, 124498

A. Airapetian

Institute of Microdevices and Control Systems (MCS) National Research University of Electronic Technology (MIET)

Email: vak@cplire.ru
Rússia, Zelenograd, Moscow, Shokin Squar., 1, 124498

V. Kaloshin

Kotelnikov Institute of Radioengineering and Electronics of RAS

Autor responsável pela correspondência
Email: vak@cplire.ru
Rússia, Mokhovaya Str., 11, Build. 7, Moscow, 125009

K. Lyalin

Institute of Microdevices and Control Systems (MCS) National Research University of Electronic Technology (MIET)

Email: vak@cplire.ru
Rússia, Zelenograd, Moscow, Shokin Squar., 1, 124498

Yu. Meleshin

Institute of Microdevices and Control Systems (MCS) National Research University of Electronic Technology (MIET)

Email: i@imym.ru
Rússia, Zelenograd, Moscow, Shokin Squar., 1, 124498

Bibliografia

  1. Poynting J.H. // Proc. Royal Soc. London A. 1909. V. 82. № 557. P. 560. https://doi.org/10.1098/rspa.1909.0060
  2. Allen L., Beijersbergen M.W., Spreeuw R.J. et al. // Phys. Rev. 1992. V. 45. № 11. P. 8185. https://doi.org/10.1103/PhysRevA.45.8185
  3. Gecevicius M., Drevinskas R., Beresna M., Kazansky P. // Appl. Phys. Lett. 2014. V. 104. № 23. P. 231110. https://doi.org/10.1063/1.4882418
  4. Бузов А.Л. // Изв. вузов. Радиоэлектроника. 1999. № 3. С. 75.
  5. Бузов А.Л. // Радиотехника. 1999. № 7. С. 48.
  6. Бузов А.Л. // Изв. вузов. Радиофизика. 1999. Т. 42. № 11. С. 1085.
  7. Thidé B., Then H., Sjöholm J. et al. // Phys. Rev. Lett. 2007. V. 99. № 8. P. 087701. https://doi.org/10.1103/Phys. Rev. Lett. 99.087701
  8. Tamburini F., Mari E., Sponselli A. et al. // New J. Physics. 2012. V. 14. № 3. P. 033001. https://doi.org/10.1088/1367-2630/14/3/033001
  9. Yan Y., Xie G., Lavery M.P., Huang H. et al. // Nature Commun. 2014. V. 5. № 1. P. 4876. https://doi.org/10.1038/ncomms5876
  10. Mahmouli F.E., Walker S.D. // IEEE Wireless Commun. Lett. 2013. V. 2. № 2. P. 223. https://doi.org/10.1109/WCL.2013.012513.120686
  11. Isakov D., Wu Y., Allen B., Grant P.S. et al. // Royal Soc. Open Science. 2020. V. 7. № 7. Article No. 200493. https://doi.org/10.1098/rsos.200493
  12. Cheng L., Hong W., Hao Z.C. // Scientific Reports. 2014. V. 4. № 1. Article No. 04814. https://doi.org/10.1038/srep04814
  13. Schemmel P., Pisano G., Maffei B. // Optics Express. 2014. V. 22. № 12. P. 14712. https://doi.org/10.1364/OE.22.014712
  14. Allen B., Pelham T., Wu Y. et al. // Royal Soc. Open Science. 2019. V. 6. № 12. Article No. 191419. https://doi.org/10.1098/rsos.191419
  15. Алтынников А.Г., Платонов Р.А., Тумаркин А.В., Медведева В.В. // Электроника и микроэлектроника СВЧ. 2019. Т. 1. С. 479.
  16. Сосунов А.М., Алтынников А.Г., Платонов Р.А. и др. Устройство для одновременного формирования ЭМ волн с различными ненулевыми ОУМ на одной несущей частоте. Патент РФ № 2 784 530. Опубл. офиц. бюл. “Изобретения. Полезные модели” № 34 от 10.12.2022.
  17. Byun W.J., Lee Y.S., Kim B.S. et al. // Electronics Lett. 2015. V. 51. № 19. P. 1480 https://doi.org/10.1049/el.2015.1833
  18. Mari E., Spinello F., Oldoni M. et al. // IEEE Antennas and Wireless Propagation Lett. 2015. V. 14. P. 556. https://doi.org/10.1109/LAWP.2014.2369536
  19. Qin F., Yi J., Cheng W. et al. // Proc. 12th European Conference on Antennas and Propagation (EuCAP 2018). London. 9–13 Apr. N.Y.: IEEE, 2018. Рaper No. 0685. https://doi.org/10.1049/cp.2018.0685
  20. Byun W.J., Kim K.S., Kim B.S. et al. // Scientific Reports. 2016. V. 6. № 1. Article No. 27339. https://doi.org/10.1038/srep27339
  21. Zhang W., Zheng S., Hui X. et al. // IEEE Antennas and Wireless Propaga-tion Lett. 2017. V. 16. P. 194. https://doi.org/10.1109/LAWP.2016.2569540
  22. Bai Q., Tennant A., Allen B. // Electronics Lett. 2014. V. 50. № 20. P. 1414. https://doi.org/10.1049/el.2014.2860
  23. Bi K., Xu J., Yang D. et al. // IEEE Photonics J. 2019. V. 11. № 2. Article No. 7901508. https://doi.org/10.1109/JPHOT.2019.2899236
  24. Fang L., Yao H., Henderson R.M. // Proc. 2017 IEEE MTT-S Int.Microwave Symp. (IMS). Honololu. 04–09 Jun. N.Y.: IEEE, 2017. Р. 658. https://doi.org/10.1109/MWSYM.2017.8058655
  25. Kang L., Li H., Zhou J. et al. // IEEE Trans. 2019. V. АР-67. № 7. P. 4866. https://doi.org/10.1109/TAP.2019.2916595
  26. Li H., Kang L., Dong K. // IEEE Access. 2020. V. 8. Article No. 211248. https://doi.org/10.1109/ACCESS.2020.3038568
  27. Du Y.X., Liu H., Qin L., Li B.S. // IEEE Access. 2020. V. 8. Article No. 48599. https://doi.org/10.1109/ACCESS.2020.2979945
  28. Liu Q., Chen Z.N., Liu Y. et al. // IEEE Trans. 2018. V. АР-66. № 4. P. 1796. https://doi.org/10.1109/TAP.2018.2803757
  29. Liu B., Cui Y., Li R. et al. // IEEE Antennas and Wireless Propagation Lett. 2017. V. 16. P. 744. https://doi.org/10.1109/LAWP.2016.2601615
  30. Wang Y.Y., Du Y.X., Qin L., Li B.S. // IEEE Access. 2026. V. 6. Article No. 64603. https://doi.org/10.1109/ACCESS.2018.2877782
  31. Zhang Y.M., Li J.L. // IEEE Antennas and Wireless Propagation Lett. 2019. V. 18. № 3. P. 417. https://doi.org/10.1109/LAWP.2019.2893035
  32. Spinello F., Mari E., Oldoni M. et al. // arXiv preprint. 2015. https://doi.org/10.48550/arXiv.1507.06889
  33. Liu K., Liu H., Qin Y. et al. // IEEE Trans. 2016. V. АР-64. № 9. P. 3850. https://doi.org/10.1109/TAP.2016.2589960
  34. Gong Y., Wang R., Deng Y. et al. // IEEE Trans. 2017. V. АР-65. № 6. P. 2940. https://doi.org/10.1109/TAP.2017.2695526
  35. Guo Z.G., Yang G.M. // IEEE Antennas and Wireless Propagation Lett. 2017. V. 16. P. 404. https://doi.org/10.1109/LAWP.2016.2581204
  36. Qin F., Li L., Liu Y. et al. // IEEE Antennas and Wireless Propagation Lett. 2019. V. 18. № 9. P. 1941. https://doi.org/10.1109/LAWP.2019.2934524
  37. Bai Q., Tennant A., Allen B., Rehman M.U. // Proc. 2013 Loughborough Antennas & Propagation Conf. (LAPC). Loughborough. 11–12 Nov. N.Y.: IEEE, 2013. Р. 410. https://doi.org/10.1109/LAPC.2013.6711931
  38. Li H., Kang L., Wei F. et al. // IEEE Antennas and Wireless Propagation Lett. 2017. V. 16. P. 3022. https://doi.org/10.1109/LAWP.2017.2758520
  39. Liu B., Lin G., Cui Y., Li R. // Scientific Reports. 2017. V. 7. № 1. Article No. 9852. https://doi.org/10.1038/s41598-017-10364-4
  40. Deng C., Chen W., Zhang Z. et al. // Int. J. Antennas and Propagation. 2013. V. 2013. Article No. 847859. https://doi.org/10.1155/2013/847859
  41. Bai X., Jin R., Liu L. et al. // Int. J. Antennas and Propagation. 2015. V. 2015. Article No. 132549. https://doi.org/10.1155/2015/132549
  42. Bai X.D., Liang X.L., Sun Y.T. et al. // Scientific Reports. 2017. V. 7. № 1. Article No. 40099. https://doi.org/10.1038/srep40099
  43. Wu J., Zhang Z., Ren X. et al. // IEEE Antennas and Wireless Propagation Lett. 2019. V. 18. № 7. P. 1482. https://doi.org/10.1109/LAWP.2019.2920695
  44. Абдрахманова Г.И., Грахова Е.П., Ишмияров А.А. и др. // Тр. Конф. Проблемы техники и технологий телекоммуникаций ПТиТТ-2020. Самара. 17–20 нояб. Самара: Поволжский гос. ун-т телекоммуникаций и информатики, 2020. С. 327.
  45. Naseri H., PourMohammadi P., Melouki N. et al. // IEEE Antennas and Wireless Propagation Lett. 2023. V. 22. № 2. P. 402. https://doi.org/10.1109/LAWP.2022.3214123
  46. Meng Z.K., Shi Y. // IEEE Trans. 2023. V. АР-71. № 2. P. 1820. https://doi.org/10.1109/TAP.2022.3228773
  47. Wu J., Fan M., Lu X. et al. // IEEE Antennas and Wireless Propagation Lett. 2024. V. 23. № 4. P. 1261. https://doi.org/10.1109/LAWP.2024.3351679
  48. An C., Lei J., Li W. et al. // IEEE Trans. 2023. V. АР-71. № 9. P. 7028. https://doi.org/10.1109/TAP.2023.3278842
  49. Kou N., Yu S. // IEEE Antennas and Wireless Propagation Lett. 2024. V. 23. № 4. P. 1211. https://doi.org/10.1109/LAWP.2024.3349562
  50. Yu S., Kou N. // IEEE Trans. 2023. V. АР-71. № 2. P. 1539. https://doi.org/10.1109/TAP.2022.3225587
  51. Zhu D., Hu J., Lin B., Wu W. // IEEE Trans.2023. V. АР-71. № 8. P. 6318. https://doi.org/10.1109/TAP.2023.3280748
  52. Luo S., Hu J., Jiang T. et al. // IEEE Antennas and Wireless Propagation Lett. 2023. V. 22. № 9. P. 2120. https://doi.org/10.1109/LAWP.2023.3277921
  53. Long L., Xiaoxiao Z. // Scientific Reports. 2018. V. 8. № 1. Article No. 5128. https://doi.org/10.1038/s41598-018-23415-1
  54. Мелешин Ю.М. // Труды МАИ. 2024. № 135.
  55. Pan Y., Zheng S., Zheng J. et al. // IEEE Antennas and Wireless Propagation Lett. 2017. V. 16. P. 385. https://doi.org/10.1109/LAWP.2016.2578958
  56. Akram M.R., Gui L., Liu D. // Proc. 2016 Asia-Pacific Int. Symp. on Electromagnetic Compatibility (APEMC). Shenzhen. 17–21 May. N.Y.: IEEE, 2016. Р. 591. https://doi.org/10.1109/APEMC.2016.7522806
  57. Liang J., Zhang S. // IEEE Access. 2016. V. 4. Article No. 9570. https://doi.org/10.1109/ACCESS.2016.2636166
  58. Jian R., Kwok Wa L. // Appl. Phys. Lett. 2018. V. 112. № .13. P. 131103. https://doi.org/10.1063/1.5021951
  59. Nur A., Abd R., Shehab N. et al. // Micromachines. 2023. V. 14. № 4. P. 841. https://doi.org/10.3390/mi14040841
  60. Hui X., Zheng S., Chen Y. // Scientific Reports. 2015. V. 15. Article No. 10148. https://doi.org/10.1038/srep10148
  61. Zheng S., Hui X., Jin X. et al. // Proc. 2015 IEEE Int. Conf. on Computational Electromagnetics. Hong Kong. 02–05 Feb. N.Y.: IEEE, 2015. Р. 239. https://doi.org/10.1109/COMPEM.2015.7052619
  62. Bai X., Liang X., Yao Y. et al. // Proc. 2016 IEEE Int. Symp. on Antennas and Propagation (APSURSI). Fajardo. 26 Jun. — 01 Jul. N.Y.: IEEE, 2016. Р. 1215. https://doi.org/10.1109/APS.2016.7696315
  63. Shixing Y., Long L., Guangming S. et al. // Appl. Phys. Lett. 2016. V. 108. № 24. P. 241901. https://doi.org/10.1063/1.4953786
  64. Ji C., Song J., Huang C. et al. // Optics Express. 2019. V. 27. № 1. P. 34. https://doi.org/10.1364/OE.27.000034
  65. Xu B., Wu C., Wei Z. et al. // Optical Materials Express. 2016. V. 6. P. 3940. https://doi.org/10.1364/OME.6.003940
  66. Chen M.L., Jiang L.J., Wei E.I. // IEEE Trans. 2017. V. АР-65. № 1. P. 396. https://doi.org/10.1109/TAP.2016.2626722
  67. Bai X., Kong F., Qian J. et al. // IEEE Antennas and Wireless Propagation Lett. 2019. V. 18. № 12. P. 2696. https://doi.org/10.1109/LAWP.2019.2949085
  68. Guo K., Zheng Q., Yin Z., Guo Z. // IEEE Access. 2020. V. 8. Article No. 75523. https://doi.org/10.1109/ACCESS.2020.2988914
  69. Huang H.F., Li S.N. // IEEE Antennas and Wireless Propagation Lett. 2019. V. 18. № 3. P. 432. https://doi.org/10.1109/LAWP.2019.2893321
  70. Li N., Zheng S., Yang H. et al. // IEEE Trans. 2024. V. МТТ-72. № 2. P. 1302. https://doi.org/10.1109/TMTT.2023.3300193
  71. Yang H., Zheng S., Zhang H. et al. // IEEE Antennas and Wireless Propagation Lett. 2024. V. 23. № 3. P. 1124. https://doi.org/10.1109/LAWP.2023.3345935
  72. Yang H., Zheng S., Zhang H. et al. // IEEE Trans. 2023. V. АР-71. № 5. P. 4194. https://doi.org/10.1109/TAP.2023.3255539
  73. Ishfaq M., Li X., Qi Z. et al. // IEEE Antennas and Wireless Propagation Lett.2023. V. 22. № 8. P. 2007. https://doi.org/10.1109/LAWP.2023.3271675
  74. Jiang L., Yu S., Kou N. // IEEE Antennas and Wireless Propagation Lett. 2023. V. 22. № 11. P. 2654. https://doi.org/10.1109/LAWP.2023.3303222
  75. Liao D., Ren X., Jing L. et al. // IEEE Trans. 2023. V. АР-71. № 6. P. 4737. https://doi.org/10.1109/TAP.2023.3266509
  76. Qin F., Zeng L., Liu S. et al. // IEEE Antennas and Wireless Propagation Lett. 2024. V. 23. № 1. P. 59. https://doi.org/10.1109/LAWP.2023.3317273
  77. Yesilyurt U., Polat H.K. // IEEE Antennas and Wireless Propagation Lett. 2023. V. 22. № 5. P. 1139. https://doi.org/10.1109/LAWP.2023.3234591
  78. Li Q., Wu C., Zhang Z. et al. // IEEE Trans. 2023. V. АР-71. № 1. P. 774. https://doi.org/10.1109/TAP.2022.3217192
  79. Bian C., Zhou D., Yang H. et al. // IEEE Trans. 2024. V. АР-72. № 1. P. 1009. https://doi.org/10.1109/TAP.2023.3317142
  80. Ali A., Khalily D., Serghioy D., Tafazoli R. // IEEE Access. 2023. V. 11. Article No. 12394. https://doi.org/10.1109/ACCESS.2023.3242647
  81. Beccaria M., Dassano G., Pirinoli P. // IEEE Antennas and Wireless Propagation Lett. 2023. V. 22. № 5. P. 980. https://doi.org/10.1109/LAWP.2022.3229559
  82. Ishfaq M., Li X., Qi Z. et al. // IEEE Antennas and Wireless Propagation Lett. 2024. V. 23. № 2. P. 688. https://doi.org/10.1109/LAWP.2023.3333234
  83. Wang C., Yu H., Wu J. et al. // IEEE Trans. 2024. V. АР-72. № 7. P. 5767. https://doi.org/10.1109/TAP.2024.3404849
  84. He X., Deng L., Feng B. et al. // IEEE Trans. 2023. V. АР-71. № 7. P. 5532. https://doi.org/10.1109/TAP.2023.3237157
  85. Shen F., Mu J., Guo Z., Guo K. // IEEE Trans.2019. V. АР-67. № 9. P. 5763. https://doi.org/10.1109/TAP.2019.2922545
  86. Zhang Z., Xiao S., Li Y., Wang Z. // IEEE Antennas and Wireless Propagation Lett. 2017. V. 16. P. 521. https://doi.org/10.1109/LAWP.2016.2586975
  87. Barbuto M., Trotta F., Bilotti F., Toscano A. // Progress In Electromagnetics Research. 2014. V. 148. P. 23. https://doi.org/10.2528/PIER14050204
  88. Weiguo D., Yongzhong Z., Yang Y., Kaiwei Z. // IEICE Electronics Express. 2018. V. 15. № 12. Article No. 20180370. https://doi.org/10.1587/elex.15.20180370
  89. Xu C., Zheng S., Zhang W. et al. // IEEE Microwave and Wireless Components Lett. 2016. V. 26. № 9. P. 738. https://doi.org/10.1109/LMWC.2016.2597262
  90. Yang W.W., Dong X.Y., Sun W.J., Chen J.X. // IEEE Access. 2018. V. 6. Article No. 21212. https://doi.org/10.1109/access.2018.2826783
  91. Gao S., Cheng W., Zhang W. et al. // arXiv preprint. arXiv:1809.04845. 2018. https://doi.org/10.48550/arXiv.1809.04845
  92. Cheng W., Zhang W., Jing H. et al. // IEEE Wireless Commun. 2018. V. 26. № 1. P. 100. https://doi.org/10.1109/MWC.2017.1700370
  93. Yan Y., Xie G., Lavery M.P., Huang H. et al. // Nature Commun. 2014. V. 5. № 1. P. 4876. https://doi.org/10.1038/ncomms5876
  94. Wang L., Jiang F., Yuan Z. et al. // IET Commun. 2018. V. 12. № 12. P. 1416. https://doi.org/10.1049/IET-COM.2017.1182
  95. Ren Y., Li L., Xie G. et al. // IEEE Trans. 2017. V. WC-16. № 5. P. 3151. https://doi.org/10.1109/TWC.2017.2675885
  96. Yagi Y., Sasaki H., Yamada T. et al. // IEEE Antennas and Wireless Propagation Lett. 2021. V. 20. № 5. P. 833. https://doi.org/10.1109/LAWP.2021.3065098
  97. Djordjevic I.B. // IEEE Access. 2017. V. 5. Article No. 16416. https://doi.org/10.1109/ACCESS.2017.2735994
  98. Luo J., Wang S., Wang F. // IEEE Commun. Lett. 2019. V. 23. № 7. P. 1178. https://doi.org/10.1109/LCOMM.2019.2916056
  99. Trichili A., Park K., Zghal M. et al. // IEEE Commun. Surveys & Tutorials. 2019. V. 21. № 4. P. 3175. https://doi.org/10.1109/COMST.2019.2915981
  100. Jamin A., Mähönen P. // Wireless Commun. and Mobile Computing. 2005. V. 5. № 2. P. 123. https://doi.org/10.1002/wcm.201
  101. Morgan K.S., Miller J.K., Cochenour B.M. et al. // J. Optics. 2016. V. 18. № 10. P. 104004. https://doi.org/10.1088/2040-8978/18/10/104004
  102. Liu K., Cheng Y., Li X. et al. // IET Microwaves, Antennas & Propagation. 2016. V. 10. № 9. P. 961. https://doi.org/10.1049/IET-MAP.2015.0842
  103. Wang L., Tao L., Li Z. et al. // 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR). Xiamen. 26–29 Nov. N.Y.: IEEE, 2019. Paper No. 9048450. https://doi.org/10.1109/APSAR46974.2019.9048450
  104. Bu X., Zhang Z., Chen L. et al. // IEEE Antennas and Wireless Propagation Lett. 2018. V. 17. № 5. P. 764. https://doi.org/10.1109/LAWP.2018.2814980
  105. Zhang C., Yuan H., Zhang Q. et al. // IEEE Access. 2022. V. 10. Article No. 87630. https://doi.org/10.1109/ACCESS.2022.3199654
  106. Liu K., Cheng Y., Gao Y. et al. // Appl. Phys. Lett. 2017. V. 110. № 16. Article No. 164102. https://doi.org/10.1063/1.4981253
  107. Yuan T., Wang H., Qin Y. et al. // IEEE Antennas and Wireless Propagation Lett. 2016. V. 15. P. 1024. https://doi.org/10.1109/LAWP.2015.2490169
  108. Luo Y., Chen Y., Zhu Y. et al. // IET Radar, Sonar & Navigation. 2020. V. 14. № 1. P. 2. https://doi.org/10.1049/IET-RSN.2019.0124
  109. Yang T., Huang W., Lu X. //IEEE Access. 2020. V. 8. P. 221103. https://doi.org/10.1109/ACCESS.2020.3042529
  110. Yuan T., Wang H., Cheng Y. et al. // Sensors. 2017. V. 17. № 3. P. 630. https://doi.org/10.3390/S17030630
  111. Bu X.X., Zhang Z., Chen L.Y. et al. // IEEE Access. 2019. V. 7. Article No. 82693. https://doi.org/10.1109/ACCESS.2019.2908209
  112. Semenikhin A.I., Semenikhina D.V. // 2023 Radiation and Scattering of Electromagnetic Waves (RSEMW). Divnomorskoe. 26–30 Jun. N.Y.: IEEE, 2023. P. 296. https://doi.org/10.1109/RSEMW58451.2023.10201940
  113. Semenikhin A.I., Semenikhina D.V. // 2023 Radiation and Scattering of Electromagnetic Waves (RSEMW). Divnomorskoe. 26–30 Jun. N.Y.: IEEE, 2023. P. 300. https://doi.org/10.1109/RSEMW58451.2023.10202052
  114. Semenikhin A.I., Semenikhina D.V., Yukhanov Y.V. // 2023 IEEE Radio and Antenna Days of the Indian Ocean (RADIO). Balaclava. 01–04 May. N.Y.: IEEE, 2023. Paper No. 10146073. https://doi.org/10.1109/RADIO58424.2023.10146073
  115. Semenikhin A.I., Semenikhina D.V., Yukhanov Y.V. // 2023 Int Conf. on Electromagnetics in Advanced Applications (ICEAA). Venice. 09–13 Oct. N.Y.: IEEE, 2023. P. 19. https://doi.org/10.1109/ICEAA57318.2023.10297857
  116. Семенихин А.И., Семенихина Д.В. // Журн. радиоэлектрон. 2024. № 5. http://jre.cplire.ru/jre/may24/10/text.pdf https://doi.org/10.30898/1684-1719.2024.5.10

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Distribution of the VV phase on a plane orthogonal to the direction of propagation with azimuthal indices l: 1 (a); 2 (b); 3 (c).

Baixar (245KB)
3. Fig. 2. Number of publications on the research and application of explosives by year.

Baixar (103KB)
4. Fig. 3. Reflector antenna.

Baixar (113KB)
5. Fig. 4. Spiral phase plate.

Baixar (83KB)
6. Fig. 5. OAR for the formation of explosives [69, Fig. 1].

Baixar (208KB)
7. Fig. 6. PAIR with two irradiators: side view (a), sectional view (b) [72, Fig. 1].

Baixar (149KB)
8. Fig. 7. PAIR with one irradiator [78, Fig. 1].

Baixar (263KB)
9. Fig. 8. DRA based on a cylindrical resonator [55, Fig. 1].

Baixar (79KB)
10. Fig. 9. Antenna in the form of a DRA array: front view (a), rear view (b), dielectric resonators and positioning array (c) [90, Fig. 10].

Baixar (197KB)
11. Fig. 10. DRA based on a hemispherical resonator with two modes [58, Fig. 1].

Baixar (90KB)
12. Fig. 11. Dual-mode PATCH antenna [84, Fig. 13].

Baixar (81KB)
13. Fig. 12. Dual-mode antenna based on two coaxial traveling wave resonators [21, Fig. 1].

Baixar (129KB)
14. Fig. 13. Structure of a printed antenna array for radiation of +1 and –1 modes in the C-band: layered view (a), front view with transparent layers (b) [35, Fig. 1].

Baixar (229KB)
15. Fig. 14. Ring antenna array for first mode radiation in the X-band [37, Fig. 5].

Baixar (83KB)
16. Fig. 15. DOS for radiation of several explosives [20, Fig. 1].

Baixar (104KB)
17. Fig. 16. Rothman lens for emitting several explosives: receiving (a), transmitting (b) [89, Fig. 2].

Baixar (183KB)
18. Fig. 17. Antenna array using: RF keys (a) [27, Fig. 5]; PIN diodes (b) [28, Fig. 2].

Baixar (183KB)
19. Fig. 18. Spectrum efficiency depending on user density and different number of BBs [92, Fig. 6].

Baixar (133KB)
20. Fig. 19. Spectral efficiency: MIMO 4 × 4 (a); system with high-frequency multiplexing with 4 modes (b); MIMO 2 × 2 with high-frequency multiplexing (c); dependence of the capacity for different system configurations on the relative communication range L/λ (d) [95, Fig. 8].

Baixar (324KB)
21. Fig. 20. MIMO-BB antenna with four ECRs and one emitter in the center (a); elementary patch antennas with vertical and horizontal polarizations (b) [96, Fig. 8].

Baixar (147KB)
22. Fig. 21. Metasurfaces of different configurations (a–g) for the formation of reflected explosives [112, Fig. 3].

Baixar (569KB)
23. Fig. 22. Scattering diagrams for the metasurfaces shown in Fig. 21 at different frequencies [112, Fig. 5].

Baixar (474KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025