Formation of biofilms on microplastics in the food chain and their role as vectors of transfer of foodborne pathogens (literature review, part 2)
- Authors: Markova Y.M.1, Smotrina Y.V.1, Bykova I.B.1, Polyanina A.S.1, Stetsenko V.V.1, Efimochkina N.R.1, Sheveleva S.A.1
-
Affiliations:
- Federal Research Centre of Nutrition, Biotechnology and Food Safety
- Issue: Vol 104, No 5 (2025)
- Pages: 621-630
- Section: FOOD HYGIENE
- Published: 15.12.2025
- URL: https://snv63.ru/0016-9900/article/view/689404
- DOI: https://doi.org/10.47470/0016-9900-2025-104-5-621-630
- EDN: https://elibrary.ru/cbmqdz
- ID: 689404
Cite item
Abstract
About the authors
Yulia M. Markova
Federal Research Centre of Nutrition, Biotechnology and Food Safety
Email: yulia.markova.ion@gmail.com
Yulia V. Smotrina
Federal Research Centre of Nutrition, Biotechnology and Food Safety
Email: noemail@neicon.ru
Irina B. Bykova
Federal Research Centre of Nutrition, Biotechnology and Food Safety
Email: noemail@neicon.ru
Anna S. Polyanina
Federal Research Centre of Nutrition, Biotechnology and Food Safety
Email: noemail@neicon.ru
Valentina V. Stetsenko
Federal Research Centre of Nutrition, Biotechnology and Food Safety
Email: noemail@neicon.ru
Natalya R. Efimochkina
Federal Research Centre of Nutrition, Biotechnology and Food Safety
Email: noemail@neicon.ru
Svetlana A. Sheveleva
Federal Research Centre of Nutrition, Biotechnology and Food Safety
Email: sheveleva@ion.ru
References
- Kwon D. Three ways to solve the plastics pollution crisis. Nature. 2023; 616(7956): 234–7. https://doi.org/10.1038/d41586-023-00975-5
- Parrish K., Fahrenfeld N.L. Microplastic biofilm in fresh-and wastewater as a function of microparticle type and size class. Environ. Sci.: Water Res. Technol. 2019; 5(3): 495–505. https://doi.org/10.1039/C8EW00712H
- Wang L., Tong J., Li Y., Zhu J., Zhang W., Niu L., et al. Bacterial and fungal assemblages and functions associated with biofilms differ between diverse types of plastic debris in a freshwater system. Environ. Res. 2021; 196: 110371. https://doi.org/10.1016/j.envres.2020.110371
- Mazaheri T., Cervantes-Huamán B.R.H., Bermúdez-Capdevila M., Ripolles-Avila C., Rodríguez-Jerez J.J. Listeria monocytogenes biofilms in the food industry: is the current hygiene program sufficient to combat the persistence of the pathogen? Microorganisms. 2021; 9(1): 181. https://doi.org/10.3390/microorganisms9010181
- Carrascosa C., Raheem D., Ramos F., Saraiva A., Raposo A. Microbial biofilms in the food industry – a comprehensive review. Int. J. Environ. Res. Public Health. 2021; 18(4): 2014. https://doi.org/10.3390/ijerph18042014
- Merino L., Procura F., Trejo F.M., Bueno D.J., Golowczyc M.A. Biofilm formation by Salmonella sp. in the poultry industry: Detection, control and eradication strategies. Food Res. Int. 2019; 119: 530–40. https://doi.org/10.1016/j.foodres.2017.11.024
- Jahid I.K., Ha S.D. The paradox of mixed‐species biofilms in the context of food safety. Compr. Rev. Food Sci. Food Saf. 2014; 13(5): 990–1011. https://doi.org/10.1111/1541-4337.12087
- Li L., Mendis N., Trigui H., Oliver J.D., Faucher S.P. The importance of the viable but non-culturable state in human bacterial pathogens. Front. Microbiol. 2014; 5: 258. https://doi.org/10.3389/fmicb.2014.00258
- Kim J.S., Chowdhury N., Yamasaki R., Wood T.K. Viable but non-culturable and persistence describe the same bacterial stress state. Environ. Microbiol. 2018; 20(6): 2038–48. https://doi.org/10.1111/1462-2920.14075
- Hussain K.A., Romanova S., Okur I., Zhang D., Kuebler J., Huang X., et al. Assessing the release of microplastics and nanoplastics from plastic containers and reusable food pouches: implications for human health. Environ. Sci. Technol. 2023; 57(26): 9782–92. https://doi.org/10.1021/acs.est.3c01942
- Yadav H., Khan M.R.H., Quadir M., Rusch K.A., Mondal P.P., Orr M., et al. Cutting boards: an overlooked source of microplastics in human food? Environ. Sci. Technol. 2023; 57(22): 8225–35. https://doi.org/10.1021/acs.est.3c00924
- Tavelli R., Callens M., Grootaert C., Abdallah M.F., Rajkovic A. Foodborne pathogens in the plastisphere: Can microplastics in the food chain threaten microbial food safety? Trends Food Sci. Technol. 2022; 129(11): 1–10. https://doi.org/10.1016/j.tifs.2022.08.021
- Cocca M., Di Pace E., Errico M.E., Gentile G., Montarsolo A., Mossotti R., et al. Proceedings of the 2nd International Conference on Microplastic Pollution in the Mediterranean Sea. Springer Nature; 2020: 112–20.
- Murphy L., Germaine K., Dowling D.N., Kakouli-Duarte T., Cleary J. Association of potential human pathogens with microplastics in freshwater systems. In: Proceedings of the 2nd International Conference on Microplastic Pollution in the Mediterranean Sea. Springer Nature; 2020: 112–20. https://doi.org/10.1007/978-3-030-45909-3_19
- Nowak J., Visnovsky S.B., Pitman A.R., Cruz C.D., Palmer J., Fletcher G.C., et al. Biofilm formation by Listeria monocytogenes 15G01, a persistent isolate from a seafood-processing plant, is influenced by inactivation of multiple genes belonging to different functional groups. Appl. Environ. Microbiol. 2021; 87(10): e02349–20. https://doi.org/10.1128/AEM.02349-20
- Schmid P.J., Maitz S., Kittinger C. Bacillus cereus in packaging material: molecular and phenotypical diversity revealed. Front. Microbiol. 2021; 12: 698974. https://doi.org/10.3389/fmicb.2021.698974
- Olanbiwoninu A.A., Popoola B.M. Biofilms and their impact on the food industry. Saudi J. Biol. Sci. 2023; 30(2): 103523. https://doi.org/10.1016/j.sjbs.2022.103523
- Wagner E.M., Pracser N., Thalguter S., Fischel K., Rammer N., Pospíšilová L., et al. Identification of biofilm hotspots in a meat processing environment: Detection of spoilage bacteria in multi-species biofilms. Int. J. Food Microbiol. 2020; 328: 108668. https://doi.org/10.1016/j.ijfoodmicro.2020.108668
- Wu X., Pan J., Li M., Li Y., Bartlam M., Wang Y. Selective enrichment of bacterial pathogens by microplastic biofilm. Water Res. 2019; 165: 114979. https://doi.org/10.1016/j.watres.2019.114979
- Pham D.N., Clark L., Li M. Microplastics as hubs enriching antibiotic-resistant bacteria and pathogens in municipal activated sludge. J. Hazard. Mater. Lett. 2021; 2: 100014. https://doi.org/10.1016/j.hazl.2021.100014
- Gallego-Hernandez A.L., DePas W.H., Park J.H., Teschler J.K., Hartmann R., Jeckel H., et al. Upregulation of virulence genes promotes Vibrio cholerae biofilm hyperinfectivity. Proc. Natl. Acad. Sci. USA. 2020; 117(20): 11010–7. https://doi.org/10.1073/pnas.1916571117
- Zhang Y., Wu Q., Forsythe S., Liu C., Chen N., Chengcheng L., et al. The cascade regulation of small RNA and quorum sensing system: Focusing on biofilm formation of foodborne pathogens in food industry. Food Bioscience. 2023; 52(11): 102472. https://doi.org/10.1016/j.fbio.2023.102472
- Moyal J., Dave P.H., Wu M., Ghannadi S.K., Brar S.K., Zhong H., et al. Impacts of biofilm formation on the physicochemical properties and toxicity of microplastics: a concise review. Rev. Environ. Contam. Toxicol. 2023; 261(1): 8. https://doi.org/10.1007/s44169-023-00035-z
- He S., Jia M., Xiang Y., Song B., Xiong W., Cao J., et al. Biofilm on microplastics in aqueous environment: Physicochemical properties and environmental implications. J. Hazard. Mater. 2022; 424(Pt. B): 127286. https://doi.org/10.1016/j.jhazmat.2021.127286
- Song F., Koo H., Ren D. Effects of material properties on bacterial adhesion and biofilm formation. J. Dent. Res. 2015; 94(8): 1027–34. https://doi.org/10.1177/0022034515587690
- Zheng S., Bawazir M., Dhall A., Kim H.E., He L., Heo J., et al. Implication of surface properties, bacterial motility, and hydrodynamic conditions on bacterial surface sensing and their initial adhesion. Front. Bioeng. Biotechnol. 2021; 9: 643722. https://doi.org/10.3389/fbioe.2021.643722
- Zhu X., Jańczewski D., Guo S., Lee S.S., Parra Velandia F.J., Teo S.L., et al. Polyion multilayers with precise surface charge control for antifouling. ACS Appl. Mater. Interfaces. 2015; 7(1): 852–61. https://doi.org/10.1021/am507371a
- Guo S., Kwek M.Y., Toh Z.Q., Pranantyo D., Kang E.T., Loh X.J., et al. Tailoring polyelectrolyte architecture to promote cell growth and inhibit bacterial adhesion. ACS Appl. Mater. Interfaces. 2018; 10(9): 7882–91. https://doi.org/10.1021/acsami.8b00666
- De-la-Pinta I., Cobos M., Ibarretxe J., Montoya E., Eraso E., Guraya T., et al. Effect of biomaterials hydrophobicity and roughness on biofilm development. J. Mater. Sci. Mater. Med. 2019; 30(7): 77. https://doi.org/10.1007/s10856-019-6281-3
- Saeki D., Nagashima Y., Sawada I., Matsuyama H. Effect of hydrophobicity of polymer materials used for water purification membranes on biofilm formation dynamics. Colloids Surf. A: Physicochem. Eng. Asp. 2016; 506: 622–8. https://doi.org/10.1016/j.colsurfa.2016.07.036
- Yuan Y., Hays M.P., Hardwidge P.R., Kim J. Surface characteristics influencing bacterial adhesion to polymeric substrates. RSC Advances. 2017; 7(23): 14254–61. https://doi.org/10.1039/C7RA01571B
- Schwibbert K., Menzel F., Epperlein N., Bonse J., Krüger J. Bacterial adhesion on femtosecond laser-modified polyethylene. Materials (Basel). 2019; 12(19): 3107. https://doi.org/10.3390/ma12193107
- Rummel C.D., Lechtenfeld O.J., Kallies R., Benke A., Herzsprung P., Rynek R., et al. Conditioning film and early biofilm succession on plastic surfaces. Environ. Sci. Technol. 2021; 55(16): 11006–18. https://doi.org/10.1021/acs.est.0c07875
- Bhagwat G., O’Connor W., Grainge I., Palanisami T. Understanding the fundamental basis for biofilm formation on plastic surfaces: role of conditioning films. Front. Microbiol. 2021; 12: 687118. https://doi.org/10.3389/fmicb.2021.687118
- Wu C., Tanaka K., Tani Y., Bi X., Liu J., Yu Q. Effect of particle size on the colonization of biofilms and the potential of biofilm-covered microplastics as metal carriers. Sci. Total. Environ. 2022; 821: 153265. https://doi.org/10.1016/j.scitotenv.2022.153265
- Ayush P.T., Ko J.H., Oh H.S. Characteristics of initial attachment and biofilm formation of pseudomonas aeruginosa on microplastic surfaces. Appl. Sci. 2022; 12(10): 5245. https://doi.org/10.3390/app12105245 https://elibrary.ru/cryaon
- Nguyen Trang P., Thi Anh Ngoc T., Masuda Y., Hohjoh K.I., Miyamoto T. Biofilm formation from Listeria monocytogenes isolated from pangasius fish-processing plants. J. Food Prot. 2023; 86(3): 100044. https://doi.org/10.1016/j.jfp.2023.100044
- Rodrigues L.B., Webber B., Levandowski R., Gehlen S.S., Santos L.R.D., Pilotto F., et al. Biofilm formation by Salmonella enteritidis at different incubation temperatures. Acta Scientiae Veterinariae. 2018; 47(1): 1654. https://doi.org/10.22456/1679-9216.89414
- Slettengren M., Mohanty S., Kamolvit W., van der Linden J., Brauner A. Making medical devices safer: impact of plastic and silicone oil on microbial biofilm formation. J. Hosp. Infect. 2020; 106(1): 155–62. https://doi.org/10.1016/j.jhin.2020.07.011
- Microbiological aspects of food hygiene. Report of a WHO Expert Committee with the participation of FAO. World Health Organ. Tech. Rep. Ser. 1976; (598): 1–103.
- Cholewińska P., Moniuszko H., Wojnarowski K., Pokorny P., Szeligowska N., Dobicki W., et al. The occurrence of microplastics and the formation of biofilms by pathogenic and opportunistic bacteria as threats in aquaculture. Int. J. Environ. Res. Public Health. 2022; 19(13): 8137. https://doi.org/10.3390/ijerph19138137
- Du F., Cai H., Zhang Q., Chen Q., Shi H. Microplastics in take-out food containers. J. Hazard. Mater. 2020; 399: 122969. https://doi.org/10.1016/j.jhazmat.2020.122969
- Jiang C., Almuhtaram H., McKie M.J., Andrews R.C. Assessment of biofilm growth on microplastics in freshwaters using a passive flow-through system. Toxics. 2023; 11(12): 987. https://doi.org/10.3390/toxics11120987
- Yi X., Li W., Liu Y., Yang K., Wu M., Zhou H. Effect of polystyrene microplastics of different sizes to Escherichia coli and Bacillus cereus. Bull. Environ. Contam. Toxicol. 2021; 107(4): 626–32. https://doi.org/10.1007/s00128-021-03215-6
- Cox K.D., Covernton G.A., Davies H.L., Dower J.F., Juanes F., Dudas S.E. Human Consumption of Microplastics. Environ. Sci. Technol. 2019; 53(12): 7068–74. https://doi.org/10.1021/acs.est.9b01517
- Jiang P., Zhao S., Zhu L., Li D. Microplastic-associated bacterial assemblages in the intertidal zone of the Yangtze Estuary. Sci. Total. Environ. 2018; 624: 48–54. https://doi.org/10.1016/j.scitotenv.2017.12.105
- Kelly J.J., London M.G., Oforji N., Ogunsola A., Hoellein T.J. Microplastic selects for convergent microbiomes from distinct riverine sources. Freshw. Sci. 2020; 39(2): 281–91. https://doi.org/10.1086/708934
- Gölz G., Kittler S., Malakauskas M., Alter T. Survival of campylobacter in the food chain and the environment. Curr. Clin. Microbiol. Rep. 2018; 5(2): 126–34. https://doi.org/10.1007/s40588-018-0092-z https://elibrary.ru/tlhzhv
- Bowley J., Baker-Austin C., Porter A., Hartnell R., Lewis C. Oceanic hitchhikers – assessing pathogen risks from marine microplastic. Trends. Microbiol. 2021; 29(2): 107–16. https://doi.org/10.1016/j.tim.2020.06.011
- da Silva R.T., de Souza Grilo M.M., Pimentel T.C., de Lucena F.A., Schaffner D.W., de Souza Pedrosa G.T., et al. An overview of foodborne viruses and SARS-CoV-2 in foods and food-contact surfaces: survival, transfer, surrogates use, and mathematical modeling. Curr. Opin. Food Sci. 2024; 55: 101119. https://doi.org/10.1016/j.cofs.2023.101119
- Khan A., Jia Z. Recent insights into uptake, toxicity, and molecular targets of microplastics and nanoplastics relevant to human health impacts. iScience. 2023; 26(2): 106061. https://doi.org/10.1016/j.isci.2023.106061
- Thomas S.G., Glover M.A., Parthasarathy A., Wong N.H., Shipman P.A., Hudson A.O. Expression of a Shiga-like toxin during plastic colonization by two multidrug-resistant bacteria, Aeromonas hydrophila RIT668 and Citrobacter freundii RIT669, isolated from endangered turtles (Clemmys guttata). Microorganisms. 2020; 8(8): 1172. https://doi.org/10.3390/microorganisms8081172
- Tong X., Li B., Li J., Li L., Zhang R., Du Y., et al. Polyethylene microplastics cooperate with Helicobacter pylori to promote gastric injury and inflammation in mice. Chemosphere. 2022; 288(Pt. 2): 132579. https://doi.org/10.1016/j.chemosphere.2021.132579
- Maruzani R., Sutton G., Nocerino P., Marvasi M. Exopolymeric substances (EPS) from Salmonella enterica: polymers, proteins and their interactions with plants and abiotic surfaces. J. Microbiol. 2019; 57(1): 1–8. https://doi.org/10.1007/s12275-019-8353-y
- FAO. Assessment of agricultural plastics and their sustainability – a call for action. Rome; 2021.
- Zhang Y., Lu J., Wu J., Wang J., Luo Y. Potential risks of microplastics combined with superbugs: Enrichment of antibiotic resistant bacteria on the surface of microplastics in mariculture system. Ecotoxicol. Environ. Saf. 2020; 187: 109852. https://doi.org/10.1016/j.ecoenv.2019.109852
- Lu J., Zhang Y., Wu J., Luo Y. Effects of microplastics on distribution of antibiotic resistance genes in recirculating aquaculture system. Ecotoxicol. Environ. Saf. 2019; 184: 109631. https://doi.org/10.1016/j.ecoenv.2019.109631
- Wang Y., Wang X., Li Y., Li J., Wang F., Xia S., et al. Biofilm alters tetracycline and copper adsorption behaviors onto polyethylene microplastics. Chem. Eng. J. 2020; 392: 123808. https://doi.org/10.1016/j.cej.2019.123808
- Yang Y., Liu G., Song W., Ye C., Lin H., Li Z., et al. Plastics in the marine environment are reservoirs for antibiotic and metal resistance genes. Environ. Int. 2019; 123: 79–86. https://doi.org/10.1016/j.envint.2018.11.061
- Wang S., Xue N., Li W., Zhang D., Pan X., Luo Y. Selectively enrichment of antibiotics and ARGs by microplastics in river, estuary and marine waters. Sci. Total. Environ. 2020; 708: 134594. https://doi.org/10.1016/j.scitotenv.2019.134594
- Chen C.Q., Zheng L., Zhou J.L., Zhao H. Persistence and risk of antibiotic residues and antibiotic resistance genes in major mariculture sites in Southeast China. Sci. Total. Environ. 2017; 580: 1175–84. https://doi.org/10.1016/j.scitotenv.2016.12.075
- Imran M., Das K.R., Naik M.M. Co-selection of multi-antibiotic resistance in bacterial pathogens in metal and microplastic contaminated environments: An emerging health threat. Chemosphere. 2019; 215: 846–57. https://doi.org/10.1016/j.chemosphere.2018.10.114
- Khare T., Mathur V., Kumar V. Agro-ecological microplastics enriching the antibiotic resistance in aquatic environment. Curr. Opin. Environ. Sci. Health. 2024; 37: 100534. https://doi.org/10.1016/j.coesh.2024.100534 https://elibrary.ru/ipftsk
- Frias J.PG.L., Nash R. Microplastics: Finding a consensus on the definition. Mar. Pollut. Bull. 2019; 138: 145–7. https://doi.org/10.1016/j.marpolbul.2018.11.022
- Gigault J., Halle A.T., Baudrimont M., Pascal P.Y., Gauffre F., Phi T.L., et al. Current opinion: what is a nanoplastic? Environ. Pollut. 2018; 235: 1030–4. https://doi.org/10.1016/j.envpol.2018.01.024
- Bartkova S., Kahru A., Heinlaan M., Scheler O. Techniques used for analyzing microplastics, antimicrobial resistance and microbial community composition: a mini-review. Front. Microbiol. 2021; 12: 603967. https://doi.org/10.3389/fmicb.2021.603967
- Arias-Andres M., Klümper U., Rojas-Jimenez K., Grossart H.P. Microplastic pollution increases gene exchange in aquatic ecosystems. Environ. Pollut. 2018; 237: 253–61. https://doi.org/10.1016/j.envpol.2018.02.058
- Hossain M.R., Jiang M., Wei Q., Leff L.G. Microplastic surface properties affect bacterial colonization in freshwater. J. Basic Microbiol. 2019; 59(1): 54–61. https://doi.org/10.1002/jobm.201800174
- Jonkman J., Brown C.M., Wright G.D., Anderson K.I., North A.J. Tutorial: guidance for quantitative confocal microscopy. Nat. Protoc. 2020; 15(5): 1585–611. https://doi.org/10.1038/s41596-020-0313-9
- Pathak A., Jaswal R., Chauhan A. Genomic characterization of a mercury resistant Arthrobacter sp. H-02-3 reveals the presence of heavy metal and antibiotic resistance determinants. Front. Microbiol. 2020; 10: 3039. https://doi.org/10.3389/fmicb.2019.03039
- Stevenson E.M., Buckling A., Cole M., Lindeque P.K., Murray A.K. Culturing the Plastisphere: comparing methods to isolate culturable bacteria colonising microplastics. Front. Microbiol. 2023; 14: 1259287. https://doi.org/10.3389/fmicb.2023.1259287
- Yu T., Ma M., Sun Y., Xu X., Qiu S., Yin J., et al. The effect of sublethal concentrations of benzalkonium chloride on the LuxS/AI-2 quorum sensing system, biofilm formation and motility of Escherichia coli. Int. J. Food Microbiol. 2021; 353: 109313. https://doi.org/10.1016/j.ijfoodmicro.2021.109313
- Zhu T., Yang C., Bao X., Chen F., Guo X. Strategies for controlling biofilm formation in food industry. Grain Oil Sci. Technol. 2022; 5(4): 179–86. https://doi.org/10.1016/j.gaost.2022.06.003
- Nahar S., Jeong H.L., Kim Y., Ha A.J., Roy P.K., Park S.H., et al. Inhibitory effects of Flavourzyme on biofilm formation, quorum sensing, and virulence genes of foodborne pathogens Salmonella Typhimurium and Escherichia coli. Food Res. Int. 2021; 147: 110461. https://doi.org/10.1016/j.foodres.2021.110461
- Ganesh P.S., Vittal R.R. In vitro antibiofilm activity of Murraya koenigii essential oil extracted using supercritical fluid CO₂ method against Pseudomonas aeruginosa PAO1. Nat. Prod. Res. 2015; 29(24): 2295–8. https://doi.org/10.1080/14786419.2015.1004673
- Vázquez-Sánchez D., Cabo M.L., Rodríguez-Herrera J.J. Antimicrobial activity of essential oils against Staphylococcus aureus biofilms. Food Sci. Technol. Int. 2015; 21(8): 559–70. https://doi.org/10.1177/1082013214553996
- Hakimi Alni R., Ghorban K., Dadmanesh M. Combined effects of Allium sativum and Cuminum cyminum essential oils on planktonic and biofilm forms of Salmonella typhimurium isolates. 3 Biotech. 2020; 10(7): 315. https://doi.org/10.1007/s13205-020-02286-2
- Kaur A., Soni S.K., Vij S., Rishi P. Cocktail of carbohydrases from Aspergillus niger: an economical and eco-friendly option for biofilm clearance from biopolymer surfaces. AMB Express. 2021; 11(1): 22. https://doi.org/10.1186/s13568-021-01183-y
- Salisbury A.M., Mullin M., Foulkes L., Chen R., Percival S.L. The ability of a concentrated surfactant gel to reduce an aerobic, anaerobic and multispecies bacterial biofilm in vitro. Adv. Exp. Med. Biol. 2021; 1323: 149–57. https://doi.org/10.1007/5584_2020_609
- Kuyukina M.S., Ivshina I.B., Korshunova I.O., Stukova G.I., Krivoruchko A.V. Diverse effects of a biosurfactant from Rhodococcus ruber IEGM 231 on the adhesion of resting and growing bacteria to polystyrene. AMB Express. 2016; 6(1): 14. https://doi.org/10.1186/s13568-016-0186-z
- de Araujo L.V., Guimarães C.R., da Silva Marquita R.L., Santiago V.M., de Souza M.P., Nitschke M., et al. Rhamnolipid and surfactin: Anti-adhesion/antibiofilm and antimicrobial effects. Food Control. 2015; 63: 171–8. https://doi.org/10.1016/j.foodcont.2015.11.036
- Cui H., Zhou H., Lin L. The specific antibacterial effect of the Salvia oil nanoliposomes against Staphylococcus aureus biofilms on milk container. Food Control. 2016; 61: 92–8. https://doi.org/10.1016/j.foodcont.2015.09.034
- Patrinoiu G., Calderón-Moreno J.M., Chifiriuc C.M., Saviuc C., Birjega R., Carp O. Tunable ZnO spheres with high anti-biofilm and antibacterial activity via a simple green hydrothermal route. J. Colloid. Interface. Sci. 2016; 462: 64–74. https://doi.org/10.1016/j.jcis.2015.09.059
- Qiu H., Pu F., Liu Z., Deng Q., Sun P., Ren J., et al. Depriving bacterial adhesion-related molecule to inhibit biofilm formation using CeO2-decorated metal-organic frameworks. Small. 2019; 15(36): e1902522. https://doi.org/10.1002/smll.201902522
- Hossain M.I., Mizan M.F.R., Roy P.K., Nahar S., Toushik S.H., Ashrafudoulla M., et al. Listeria monocytogenes biofilm inhibition on food contact surfaces by application of postbiotics from Lactobacillus curvatus B.67 and Lactobacillus plantarum M.2. Food Res. Int. 2021; 148: 110595. https://doi.org/10.1016/j.foodres.2021.110595
Supplementary files
